Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0265

Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors  

Mabuchi, Hiroshi (Department of Lipidology, Graduate School of Medical Science, Kanazawa University)
Nohara, Atsushi (Department of Lipidology, Graduate School of Medical Science, Kanazawa University)
Inazu, Akihiro (Laboratory Science, Graduate School of Medical Science, Kanazawa University)
Abstract
Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.
Keywords
CETP deficiency; cholesteryl ester transfer protein (CETP); HDL & LDL; hyper-HDL-cholesterolemia; inhibitors of CETP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brewer, H.B. Jr. (2004). Increasing HDL cholesterol levels. N. Engl. J. Med. 350, 1491-1494.   DOI   ScienceOn
2 Barter, P.J., Brewer, H.B. Jr., Chapman, M.J., Hennekens, C.H., Rader, D.J., and Tall, A.R. (2003). Cholesteryl ester transfer protein:a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 160-167.   DOI   ScienceOn
3 Bell, T.A., Graham, M.J., Lee, R.G., Mullick, A.E., Fu, W., Norris, D., and Crooke, R.M. (2013). Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice. J. Lipid Res. 54, 2647-2657.   DOI   ScienceOn
4 de Grooth, G.J., Smilde, T.J., Van Wissen, S., Klerkx, A.H., Zwinderman, A.H., Fruchart, J.C., Kastelein, J.J., Stalenhoef, A.F., and Kuivenhoven, J.A. (2004). The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis 173, 261-267.   DOI   ScienceOn
5 Brousseau, M.E., Schaefer, E.J., Wolfe, M.L., Bloedon, L.T., Digenio, A.G., Clark, R.W., Mancuso, J.P., and Rader, D.J. (2004). Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505-1515.   DOI   ScienceOn
6 Brown, M.L., Inazu, A., Hesler, C.B., Agellon, L.B., Mann, C., Whitlock, M.E., Marcel, Y.L., Milne, R.W., Koizumi, J., Mabuchi, H., et al. (1989). Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448-451.   DOI   ScienceOn
7 Curb, J.D., Abbott, R.D., Rodriguez, B.L., Masaki, K., Chen, R., Sharp, D.S., and Tall, A.R. (2004). A prospective study of HDLC and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 45, 948-953.   DOI   ScienceOn
8 Downs, J.R., Clearfield, M., Weis, S., Whitney, E., Shapiro, D.R., Beere, P.A., Langendorfer, A., Stein, E.A., Kruyer, W., Gotto, A.M. Jr., et al. (1998). Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279, 1615-1622.   DOI   ScienceOn
9 Glueck, C.J., Gartside, P., Fallat, R.W., Sielski, J., and Steiner, P.M. (1976). Longevity syndromes: familial hypo-$\beta$ and familial hyper-$\alpha$-lipoproteinemia. J. Lab. Clin. Med. 88, 941-957.
10 Gaynor, B.J., Sand, T., Clark, R.W., Aiello, R.J., Bamberger, M.J., and Moberly, J.B. (1994). Inhibition of cholesteryl ester transfer protein activity in hamsters alters HDL lipid composition. Atherosclerosis 110, 101-109.   DOI
11 Haraki, T., Inazu, A., Yagi, K., Kajinami, K., Koizumi, J., and Mabuchi, H. (1997). Clinical characteristics of double heterozygotes with familial hypercholesterolemia and cholesteryl ester transfer protein deficiency. Atherosclerosis 132, 229-236.   DOI   ScienceOn
12 Gordon, T., Kannel, W.B., Castelli, W.P., and Dawber, T.R. (1981). Lipoproteins, cardiovascular disease, and death. The Framingham study. Arch. Intern. Med. 141, 1128-1131.   DOI   ScienceOn
13 Ha, Y.C., and Barter, P.J. (1982). Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp. Biochem. Physiol. B. 71, 265-269.   DOI   ScienceOn
14 Han K.H., Park, Y.B., Chae, I.H., Kim, H.S., Sohn, D.W., Oh, B.H., Lee, M.M, Choi, Y.S., Seo, J.D., Lee, Y.W., et al. (1996). CETP (cholesteryl esters transfer protein) deficiency caused by genetic mutation in the CETP gene in normal Korean population. Korean Circ. J. 26, 500-506.   DOI
15 Hirano, K., Yamashita, S., Kuga, Y., Sakai, N., Nozaki, S., Kihara, S., Arai, T., Yanagi, K., Takami, S., Menju, M., et al. (1995). Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler. Thromb. Vasc. Biol. 15, 1849-1856.   DOI
16 Inazu, A.1., Brown, M.L., Hesler, C.B., Agellon, L.B., Koizumi, J., Takata, K., Maruhama, Y., Mabuchi, H., and Tall, A.R. (1990). Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234-1238.   DOI   ScienceOn
17 Huang, Z., Inazu, A., Nohara, A., Higashikata, T., and Mabuchi, H. (2002). Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin. Sci. (Lond). 103, 587-594.   DOI
18 Kastelein, J.J., van Leuven, S.I., Burgess, L., Evans, G.W., Kuivenhoven, J.A., Barter, P.J., Revkin, J.H., Grobbee, D.E., Riley, W.A., Shear, C.L., et al. (2007). Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620-1630.   DOI   ScienceOn
19 Inazu, A.1., and Mabuchi, H. (2003). Therapeutic implications of cholesteryl ester transfer protein inhibitors in hyperlipidemia and low high-density lipoprotein-cholesterolemia. Curr. Opin. Investig. Drugs 4, 291-297.
20 Inazu, A.1., Jiang, X.C., Haraki, T., Yagi, K., Kamon, N., Koizumi, J., Mabuchi, H., Takeda, R., Takata, K., Moriyama, Y., et al. (1994). Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high-density lipoprotein cholesterol. J. Clin. Invest. 94, 1872-1882.   DOI   ScienceOn
21 Koizumi, J., Mabuchi, H., Yoshimura, A., Michishita, I., Takeda, M., Itoh, H., Sakai, Y., Sakai, T., Ueda, K., and Takeda, R. (1985). Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis 58, 175-186.   DOI   ScienceOn
22 Linsel-Nitschke P.I., and Tall A.R. (2005). HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 4, 193-205.   DOI   ScienceOn
23 Miwa, K., Inazu, A., Kawashiri, M., Nohara, A., Higashikata, T., Kobayashi, J., Koizumi, J., Nakajima, K., Nakano, T., Niimi, M., et al. (2009). Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin. Chim. Acta 402, 19-24.   DOI   ScienceOn
24 Marotti, K.R., Castle, C.K., Boyle, T.P., Lin, A.H., Murray, R.W., and Melchior, G.W. (1993). Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364, 73-75.   DOI   ScienceOn
25 National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). (2002). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106, 3143-3421.
26 Matsuura, F., Wang, N., Chen, W., Jiang, X.C., and Tall, A.R. (2006). HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest. 116, 1435-1442.   DOI   ScienceOn
27 Moriyama, Y., Okamura, T., Inazu, A., Doi, M., Iso, H., Mouri, Y., Ishikawa, Y., Suzuki, H., Iida, M., Koizumi, J., et al. (1998). A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev. Med. 27, 659-667.   DOI   ScienceOn
28 Nissen, SE., Tardif, J.C., Nicholls, S.J., Revkin, J.H., Shear, C.L., Duggan, W.T., Ruzyllo, W., Bachinsky, W.B., Lasala, G.P., Tuzcu, E.M., et al. (2007). Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304-1316.   DOI   ScienceOn
29 Sacks, F.M., Pfeffer, M.A., Moye, L.A., Rouleau, J.L., Rutherford, J.D., Cole, T.G., Brown, L., Warnica, J.W., Arnold, J.M., Wun, C.C., et al. (1996). The effect of pravastatin on coronary events after myocardial infarction in participants with average cholesterol levels. N. Engl. J. Med. 335, 1001-1009.   DOI   ScienceOn
30 Okamoto, H., Yonemori, F., Wakitani, K., Minowa, T., Maeda, K., and Shinkai, H. (2000). A cholesteryl ester transfer protein in hibitor attenuates atherosclerosis in rabbits. Nature 406, 203-207.   DOI   ScienceOn
31 Olsson, A.G., Schwartz, G.G., Szarek, M., Sasiela, W.J., Ezekowitz, M.D., Ganz, P., Oliver, M.F., Waters, D., and Zeiher, A. (2005). High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACLE trial. Eur. Heart J. 26, 890-896.   DOI   ScienceOn
32 Pedersen, T.R., Kjekshus, J., Berg, K., Haghfelt, T., Faergeman, O., Faergeman, G., Pyörälä, K., Miettinen, T., Wilhelmsen, L., Olsson, A.G., et al. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383-1389.
33 Rittershaus, C.W., Miller, D.P., Thomas, L.J., Picard, M.D., Honan, C.M., Emmett, C.D., Pettey, C.L., Adari, H., Hammond, R.A., Beattie, D.T., et al. (2000). Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106-2112.   DOI   ScienceOn
34 Schaefer, E.J. (2013). Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Curr. Opin. Lipidol. 24, 259-264.   DOI
35 Tall, A.R. (1993). Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255-1274.
36 Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., MacFarlane, P.W., McKillop, J.H., and Packard, C.J. (1995). For the West of Scotland Coronary Prevention Study Group: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333, 1301-1307.   DOI   ScienceOn
37 Sikorski, J.A. (2006). Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem. 49, 1-22.   DOI   ScienceOn
38 Sugano, M., Makino, N., Sawada, S., Otsuka, S., Watanabe, M., Okamoto, H., Kamada, M., and Mizushima, A. (1998). Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273, 5033-5036.   DOI   ScienceOn
39 Wolfe, M.L., and Rader, D.J. (2004). Cholesteryl ester transfer protein and coronary artery disease: an observation with therapeutic implications. Circulation 110, 1338-1340.   DOI   ScienceOn
40 Zhong, S., Sharp, D.S., Grove, J.S., Bruce, C., Yano, K., Curb, J.D., and Tall, A.R. (1996). Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917-2923.   DOI   ScienceOn
41 Hirano, K., Yamashita, S., Nakajima, N., Arai, T., Maruyama, T., Yoshida, Y., Ishigami, M., Sakai, N., Kameda-Takemura, K., and Matsuzawa, Y. (1997). Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 17, 1053-1059.   DOI   ScienceOn
42 Agellon, L.B., Walsh, A., Hayek, T., Moulin, P., Jiang, X.C., Shelanski, S.A., Breslow, J.L., and Tall, A.R. (1991). Reduced high-density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J. Biol. Chem. 266, 10796-10801.