• Title/Summary/Keyword: CD137

Search Result 119, Processing Time 0.038 seconds

CD137-CD137 Ligand Interactions in Inflammation

  • Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.84-89
    • /
    • 2009
  • The main stream of CD137 studies has been directed to the function of CD137 in $CD8^+$ T-cell immunity, including its anti-tumor activity, and paradoxically the immunosuppressive activity of CD137, which proves to be of a great therapeutic potential for animal models of a variety of autoimmune and inflammatory diseases. Recent studies, however, add complexes to the biology of CD137. Accumulating is evidence supporting that there exists a bidirectional signal transduction pathway for the CD137 receptor and its ligand (CD137L). CD137/CD137L interactions are involved in the network of hematopoietic and nonhematopoietic cells in addition to the well characterized antigen-presenting cell-T cell interactions. Signaling through CD137L plays a critical role in the differentiation of myeloid cells and their cellular activities, suggesting that CD137L signals trigger and sustain inflammation. The overall consequence might be that the amplified inflammation by CD137L enhances the T-cell activity together with CD137 signals by upregulating costimulatory molecules, MHC molecules, cell adhesion molecules, cytokines, and chemokines. Solving this outstanding issue is urgent and will have an important clinical implication.

Regulation of Inflammation by Bidirectional Signaling through CD137 and Its Ligand

  • Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.176-180
    • /
    • 2012
  • Although the majority of research on CD137 has been directed to T cells, it is becoming clear that this molecule has distinct functions in other lineages of cells, including non-hematopoietic cells. In particular, emerging evidence suggests that the CD137-its ligand (CD137L) network involving immune cells and non-immune cells, directly or indirectly regulates inflammation in both positive and negative manners. Bidirectional signaling through both CD137 and CD137L is critical in the evolution of inflammation: 1) CD137L signaling plays an indispensible role in the activation and recruitment of neutrophils by inducing the production of proinflammatory cytokines and chemokines in hematopoietic and non-hematopoietic cells such as macrophages, endothelial cells and epithelial cells; 2) CD137 signaling in NK cells and T cells is required for their activation and can influence other cells participating in inflammation via either their production of proinflammatory cytokines or engagement of CD137L by their cell surface CD137: 3) CD137 signaling can suppress inflammation by controlling regulatory activities of dendritic cells and regulatory T cells. As recognition grows of the role of dysregulated CD137 or CD137L stimulation in inflammatory diseases, significant efforts will be needed to develop antagonists to CD137 or CD137L.

STUDY ON THE REGULATION OF OSTEOCLAST AND T CELL ACTIVATION VIA CELL MEMBRANE PROTEINS OF TNF FAMILY, CD137 LIGAND AND RANK LIGAND (TNF계 CD137L 및 RANKL의 파골세포와 T 세포에 대한 활성조절)

  • Hong, Sung-Joon;Park, Jae-Hong;Lee, Hyeon-Woo;Lee, Keung-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.597-606
    • /
    • 2008
  • Resorption of alveolar bone in periodontitis is due to excessive differentiation and activation of osteoclasts. Bacterial antigens causing periodontitis activates CD4 T cells, which leads to expressing RANK ligand (RANKL) on CD4 T cells. RANKL binds RANK on preosteoclasts or osteoclasts, and enhances the differentiation preosteoclasts into osteoclasts and the activation of mature osteoclasts. CD137, one of TNF receptor (TNFR) family, expressed on activated T cells binds with CD137 ligand (CD137L) on antigen presenting cells. Cross-linking of CD137 by CD137L acts as T cell co-stimulatory signals and, therefore, enhances the activation of T cell. In this study, I elucidated the biological responses of CD137L on (pre)osteoclasts and RANKL on T cells in the context of in vivo interaction between T cells and osteoclasts. RAW264.7, murine monocytic cells, constitutively express CD137L. Ligation of CD137L with anti-CD137L mAb inhibited RANKL-induced osteoclast formation in a dosedependent manner. Bone marrow cells are expressed CD137L by the treatment with M-CSF. Cross-linking of CD137L abolished M-CSF/ RANKL-evoked the formation of multi-nucleated osteoclasts. Both mouse CD4 and CD8 T cells are expressed RANKL following their activation. Ligation of RANKL with OPG, the decoy receptor for RANKL, inhibited both CD4 and CD8 T cell proliferation. These effects were attributed to RANKL-induced apoptosis. These data indicate that CD137L and RANKL on osteoclasts and T cells, respectively provide them with inhibitory signal.

  • PDF

Is CD137 Ligand (CD137L) Signaling a Fine Tuner of Immune Responses?

  • Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • Now, it has been being accepted that reverse signaling through CD137 ligand (CD137L) plays an important role in vivo during hematopoiesis and in immune regulation. However, due to technical difficulty in dissecting both directional signaling events simultaneously in vivo, most biological activities caused by CD137-CD137L interactions are considered as results from signaling events of the CD137 receptor. To make the story more complex, $CD137^{-/-}$ and $CD137L^{-/-}$ mice have increased or decreased immune responses in a context-dependent manner. In this Mini review, I will try to provide a plausible explanation for how CD137L signaling is controlled during immune responses.

Recombinant TAT-CD137 Ligand Cytoplasmic Domain Fusion Protein Induces the Production of IL-6 and TNF-${\alpha}$ in Peritoneal Macrophages

  • Kim, Jung-D.;Lee, Eun-A.;Quang, Nguyen N.;Cho, Hong-R.;Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.216-222
    • /
    • 2011
  • Background: The ligand for CD137 (CD137L; also called 4-1BBL) is mainly expressed on activated APCs such as dendritic cells, B cells and macrophages. Even though CD137L functions as a trigger of the CD137 signaling pathway for T cell activation and expansion, engagement of CD137L can deliver a signal leading to the production of proinflammatory cytokines in macrophages. Methods: We generated cell-permeable TAT-CD137L cytoplasmic domain fusion protein (TAT-CD137Lct) and examined its ability to initiate the CD137L reverse signaling pathway. Results: Treatment of TAT-CD137Lct induced the production of high levels of IL-6 and TNF-${\alpha}$ mRNAs and proteins in peritoneal macrophages. TAT-CD137Lct increased phosphorylation of Erk, p38 MAPK and Jnk, and activated transcription factors C/EBP and CREB. However, TAT-CD137Lct did not visibly affect the degradation of the inhibitor of NF-${\kappa}B$ ($IkB{\alpha}$). We further demonstrated that JNK activation was required for TAT-CD137Lct-induced production of TNF-${\alpha}$, while activation of Erk and p38 MAPK were involved in IL-6 and TNF-${\alpha}$ production. Conclusion: Our results suggest that TATCD137Lct is an effective activator for the CD137L reverse signaling pathway.

Agonistic Anti-CD137 Monoclonal Antibody Treatment Induces CD11b+Gr-1+ Myeloid-derived Suppressor Cells

  • Lee, Jung-Mi;Seo, Jeong-Hwan;Kim, Yeon-Jeong;Kim, Yun-Sun;Ko, Hyun-Jeong;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2010
  • CD137 (4-1BB/tnfrsf9) has been shown to co-stimulate T cells. However, agonistic anti-CD137 monoclonal antibody (mAb) treatment can suppress $CD4^+$ T cells, ameliorating autoimmune diseases, whereas it induces activation of $CD8^+$ T cells, resulting in diverse therapeutic activity in cancer, viral infection. To investigate the CD137-mediated T cell suppression mechanism, we examined whether anti-CD137 mAb treatment could affect $CD11b^+Gr-1^+$ myeloid-derived suppressor cells (MDSCs). Intriguingly, anti-CD137 mAb injection significantly increased $CD11b^+Gr-1^+$ cells, peaking at days 5 to 10 and continuing for at least 25 days. Furthermore, this cell population could suppress both $CD8^+$ T cells and $CD4^+$ T cells. Thus, this study demonstrated that, for the first time, anti-CD137 mAb treatment could induce $CD11b^+Gr-1^+$ MDSCs under normal conditions, suggesting a possible relationship between myeloid cell induction and CD137-mediated immune suppression.

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.

Anti-CD137 mAb Deletes Both Donor $CD4^+$ and $CD8^+$ T Cells in Acute Graft-versus-host Disease

  • Kim, Ju-Yang;Cho, Hong-Rae;Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.428-430
    • /
    • 2011
  • We previously demonstrated that in vivo engagement of CD137, a member of TNF receptor superfamily, can delete allorective $CD4^+$ T cells through the induction of activation-induced cell death (AICD) in chronic graft-versus-host disease (cGVHD) and subsequently reverse established cGVHD. In this study, we further showed that agonistic anti-CD137 mAb was highly effective in triggering AICD of donor $CD8^+$ T cells as well as donor $CD4^+$ T cells in the $C57BL/6{\rightarrow}unirradiated$ $(C57BL/6\;{\times}\;DBA/2)F1$ acute GVHD model. Our results suggest that strong allostimulation should facilitate AICD of both alloreactive $CD4^+$ and $CD8^+$ T cells induced by CD137 stimulation. Therefore, depletion of pathogenic T cells using agonistic anti-CD137 mAb combined with potent TCR stimulation may be used to block autoimmune or inflammatory diseases mediated by T cells.

Treatments of Electron Transport Layer in the Fabrication of High Luminous Green Phosphoresent OLED (고휘도 녹색 인광 OLED 제작에서 전자수송층 처리)

  • Jang, Ji-Geun;Kim, Won-Ki;Shin, Sang-Baie;Shin, Hyun-Kwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • New devices with structure of ITO/2TNATA/NPB/TCTA/CBP:7%Ir(ppy)$_3$/BCP/ETL/LiF/Al were proposed to develop high luminous green phosphorescent organic light emitting diodes and their electroluminescent properties were evaluated. The experimental devices were divided into two kinds according to the material ($Alq_3$ or SFC137) used as an electron transport layer (ETL). Luminous intensities of the devices using $Alq_3$ and SFC137 as electron transport layers were 27,500 cd/$m^2$ and 51,500 cd/$m^2$ at an applied voltage of 9V, respectively. The current efficiencies of both devices were similar as 12.6 cd/A under a luminance of 10,000 cd/$m^2$, while showed slower decay in the device with SFC137 as an ETL according to the further increase of luminance. Current density and luminance of the device with SFC137 as an electron transport layer were higher at the same voltage than those of the device with $Alq_3$ as an ETL.

  • PDF