• Title/Summary/Keyword: CCD Imaging Sensor

Search Result 40, Processing Time 0.024 seconds

A Method for Quantitative Measurement of Lateral Flow Immunoassay Using Color Camera (컬러 카메라를 이용한 측면유동 면역 어세이 정량분석 방법)

  • Park, Jongwon
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Among semi-quantitative or fully quantitative lateral flow assay readers, an image sensor-based instrument has been widely used because of its simple setup, cheap sensor price, and compact equipment size. For all previous approaches, monochrome CCD or CMOS cameras were used for lateral flow assay imaging in which the overall intensities of all colors were taken into consideration to estimate the analyte content, although the analyte related color information is only limited to a narrow wavelength range. In the present work, we introduced a color CCD camera as a sensor and a color decomposition method to improve the sensitivity of the quantitative biosensor system which utilizes the lateral flow assay successfully. The proposed setup and image processing method were applied to achieve the quantification of imitatively dispensed particles on the surface of a porous membrane first, and the measurement result was then compared with that using a monochrome CCD. The compensation method was proposed in different illumination conditions. Eventually, the color decomposition method was introduced to the commercially available lateral flow immunochromatographic assay for the diagnosis of myocardial infarction. The measurement sensitivity utilizing the color image sensor is significantly improved since the slopes of the linear curve fit are enhanced from 0.0026 to 0.0040 and from 0.0802 to 0.1141 for myoglobin and creatine kinase (CK)-MB detection, respectively.

Study on Performance Evaluation of Dental X-ray Equipment (치과 방사선 발생기의 성능평가에 관한 연구)

  • Jung, Jae-Eun;Jung, Jae-Ho;Kang, Hee-Doo;Lee, Jong-Woong;Ra, Keuk-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2009
  • I think this will be valuable reference for assuring consistency and homogeneity of clarity and managing dental radiation equipment by experimentation of dental radiation equipment permanent which based on KS C IEC 61223-3-4 standard and KS C IEC 61223-2-7. Put a dental radiation generator and experiment equipment as source and film(sensor) length within 30 em, place the step-wedge above the film(sensor). Tie up tube voltage 60 kVp, tube current 7 mA and then get an each image through CCD sensor and film by changing the exposure time as 0.12sec, 0.25sec, 0.4sec. Repeat the test 5times as a same method. Measure the concentration of each stage of film image, which gained by experiment, using photometer. And the image that gained by CCD sensor, analyze the pixel value's change by using image J, which is analyzing image program provided by NIH(National Institutes of Health). In case of film, while 0.12sec and 0.25sec show regular rising pattern of density gap as exposure time's increase, 0.4sec shows low rather than 0.12sec and 0.25sec. In case of CCD sensor density test, the result shows opposite pattern of film. This makes me think that pixels of CCD's sensor can have 0~255 value but it becomes saturation if the value is over 255. The way that getting clear reception during decreasing human's exposed radiation is one of maintaining an equipment as a best condition. So we should keeping a dental radiation equipment's condition steadily through cyclic permanent test after factor examination. Even digital equipment doesn't maintain a permanent, it can maintain a clarity by post processing of image so that hard to set it as standard of permanent test. Therefore it would be more increase the accuracy that compare a film as standard image. Thus I consider it will be an important measurement to care for dental radiation equipment and warrant homogeneity, consistency of dental image's clarity through comparing pattern which is the result from factor test against cyclic permanent test.

  • PDF

COMPARATIVE STUDY OF DIRECT DIGITAL RADIOGRAPHIC SYSTEM WITH FILM-BASED DIGITAL IMAGING SYSTEM USING EKTASPEED AND EKTASPEED PLUS FILM (직접 디지탈 방사선 촬영시스템과 Ektaspeed 및 Ektaspeed Plus 필름을 이용한 방사선 사진용 디지탈 영상시스템과의 비교 연구)

  • Do Jung-Joo;Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.51-70
    • /
    • 1995
  • The purpose of this investigation was to compare the direct digital radiographic system with film-based digital imaging system using Ektaspeed and Ektaspeed Plus film with respect to image characteristics and detectability and evaluate the sensor noise with the use of subtraction method. Direct digital radiographic system which used was Sens-A-Ray system(Regam Medical Systems, Sundsvall, Sweden) and film-based digital imaging system was composed of Macintosh II ci computer, high resolution Sony XC-77 CCD camera and intraoral x-ray film(Kodak Ektaspeed film, Kodak Ektaspeed Plus film). Images were taken by using CCD sensor of Sens-A-Ray system, Ektaspeed film and Ektaspeed Plus film with variable exposure time(0.06s, 0.1s, 0.16s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, O.8s, LOs), 5 times at each exposure time. And then ektaspeed films and ektaspeed plus films were digitized using CCD camera. Image groups were divided into 3 groups; Sens-A-Ray group(direct digital radiographic system), Ektaspeed group and Ektaspeed Plus group (film-based digital imaging system) They were assessed by the following three aspects; image density, image contrast and detectability and sensor noise of Sens-A-Ray system was also evaluated. The results were as follow : 1. S group showed higher density than E , EP group except at the low exposure time(p<0.01). 2. S group showed higher contrast than E,EP group except at the high exposure time(p<0.01). 3. All groups showed good detectability at the each proper exposure time. Lowest exposure time which shows maximum detectability in S,EP group(0.5s) was lower than that in E group(0.6s). 4. Sensor noise of Sens-A-Ray system generally increased according to exposure time. On the basis of the above results, it was considered that Sens-A-Ray system could show higher speed, higher contrast than Ektaspeed, Ektaspeed Plus film except at too high and low exposure time and the same detectability as the conventional intraoral film.

  • PDF

Design Fabrication and Operation of the 16$\times$16 charge Coupled Area Image Sensor Using Double Polysilicon Gates (다결정 실리콘 이중전극 구조를 이용한 16$\times$16 이차원 전하결합 영상감지소자의 설계, 제작 및 동작)

  • Jeong, Ji-Chae;O, Chun-Sik;Kim, Chung-Gi
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.68-76
    • /
    • 1985
  • A charge-coupled device (CCD) area image sensor has been demonstrated with an experi-mental 16$\times$16 prototype. The prototype is a vertical frame transfer charge.coupled imager using two-phase gate electrode structures. In this device, ion-implanted barriers are used for two -phase CCD, and NMOS process has been adopted. The total imaging setup consisting of optical lens, clock generators, clock drivels, staircase signal generators, and oscilloscope is easily achieved with the aid of PROM . English alphabets are displayed on the oscilloscope screen using the total imaging set-up. We measure charge transfer inefficiency and dark current for the fabricated devices.

  • PDF

Region-adaptive Smear Removal Method Using Optical Black Region for CCD Sensors (광학암흑영역을 이용한 CCD 센서의 영역 적응적 스미어 제거 방식)

  • Han, Young-Seok;Song, Ki-Sun;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.107-116
    • /
    • 2010
  • Smear is a phenomenon that occurs when an extremely strong light source appears in the imaging system with CCD sensor. It occurs due to the signal charge transfer of CCD and appears as bright lines of noise emanating vertically (or horizontally) from the light source. For still images, smear can be reduced by using a mechanical shutter or special drive methods, but these techniques cannot be applied to image sequences. In this paper, we propose a smear removal method that can be applied to imaging systems for not only still images but also image sequences. The proposed method uses the optical black region(OBR) which is a group of pixels located in the boundary of CCD imaging sensors. Although the OBR is not exposed to light, it contains smear information caused by the charge transport. First, noise and the smear signal in the OBR is separated, and noise is removed to correctly estimate smear effect. Then, corrected OBR signal is uniformly subtracted to eliminate smear effect. Also, if saturation is occurred, the current pixel is substituted by weighted summation of neighboring pixels to improve the visual degradation. Experimental results show that the proposed algorithm outperforms the conventional methods.

Design and Implementation of Multimedia Sensor Networks with Image Sensor (이미지 센서를 이용한 멀티미디어 센서 네트워크의 설계 및 구현)

  • Lee, Joa-Hyoung;Jo, Young-Tae;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.615-622
    • /
    • 2009
  • Advances in wireless communication and hardware technology have made it possible to manufacture high-performance tiny sensor nodes. More recently, the availability of inexpensive CMOS cameras that are able to capture multimedia data from the environment has fostered the development of Wireless Multimedia Sensor Networks (WMSNs). WMSN with the CMOS imaging sensor which is cheaper and consumes lower power than the CCD will not only enhance existing sensor network but also enable several new application such as multimedia surveillance sensor network, multimedia environment monitoring. This paper presents the design of a multimedia sensor network with the image sensor mote developed by us using the CMOS. Given new multimeida sensor network, the new image collecting protocol was tested and analyzed.

A Study on the Measurement of Spectral Response Characteristics of Color Image Sensor (칼라영상센서의 분광감도 측정에 관한 연구)

  • 박승옥;김홍석
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.266-273
    • /
    • 1995
  • Colors reproduced by color imaging system are affected by various physical factors. The spectral response of the color image sensor is one of the important factors. We developed a spectral response characteristics measurement system which is composed of optical part and color analyzing part. The data from the optical part was analyzed by the color analyzing part and spectral response characteristics of R, G, B three color sensors were obtained. Using this system, the spectral response characteristics of a CCD color camera was measured. From this result, color rendition and linearity of the camera could be analyzed. This measurement system is $.$considered to be very useful for the evaluation of color image sensor characteristics. stics.

  • PDF

A Study on the Static Target Accurate Size Estimation Algorithm with TTSE (정지 표적 정밀 크기 추정을 위한 TTSE 알고리즘 연구)

  • Jung, Yun Sik;Kim, Jin Hwan;Hong, Seok Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.530-535
    • /
    • 2016
  • In this paper, the TTSE (Target size and Triangulation-based target Size Estimator) algorithm is proposed to estimate static target size in an imaging environment. The target size information is an important factor for accurate imaging target tracking. However, the imaging sensor cannot generate distance between the missile and target to calculate the target size. To overcome the problem, we propose the TTSE algorithm, which is based on target size and triangulation. The proposed method performance is tested in a target intercept scenario. The experiment results show that the proposed algorithm has better performance than the conventional algorithm (ET-TSE) for accurate CCD target size estimation.

A Study on the Target Tracking Algorithm based on the Target Size Estimation (표적 크기 추정 기반의 표적 추적 알고리듬 연구)

  • Jung, Yun Sik;Lee, Sang Suk;Rho, Shin Baek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • In this paper, a novel MBE (Model Based target size Estimator) is presented for SDIIR (Strap Down Imaging Infrared) seekers. The target tracking requires the target size information for which residual range between target and missile should be provided. Unfortunately, in general, the missile with passive sensor such as IIR (Imaging Infrared), CCD (Coupled Charging Device) cannot obtain range information. To overcome the problem, the proposed method enables the SDIIR seeker to estimates target size by using target size model and track the target. The performance of proposed method is tested at IIR target tracking of target intercept scenario. The experiment results show that the proposed algorithm has the relatively good performance.

Minimization of Motion Blur and Dynamic MTF Analysis in the Electro-Optical TDI CMOS Camera on a Satellite (TDI CMOS 센서를 이용한 인공위성 탑재용 전자광학 카메라의 Motion Blur 최소화 방법 및 Dynamic MTF 성능 분석)

  • Heo, HaengPal;Ra, SungWoong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.85-99
    • /
    • 2015
  • TDI CCD sensors are being used for most of the electro-optical camera mounted on the low earth orbit satellite to meet high performance requirements such as SNR and MTF. However, the CMOS sensors which have a lot of implementation advantages over the CCD, are being upgraded to have the TDI function. A few methods for improving the issue of motion blur which is apparent in the CMOS sensor than the CCD sensor, are being introduced. Each pixel can be divided into a few sub-pixels to be read more than once as is the same case with three or four phased CCDs. The fill factor can be reduced intentionally or even a kind of mask can also be implemented at the edge of pixels to reduce the blur. The motion blur can also be reduced in the TDI CMOS sensor by reducing the integration time from the full line scan time. Because the integration time can be controlled easily by the versatile control electronics, one of two performance parameters, MTF and SNR, can be concentrated dynamically depending on the aim of target imaging. MATLAB simulation has been performed and the results are presented in this paper. The goal of the simulation is to compare dynamic MTFs affected by the different methods for reducing the motion blur in the TDI CMOS sensor.