• Title/Summary/Keyword: CAPS markers

Search Result 44, Processing Time 0.048 seconds

Development of a CAPS marker for the identification of the Lentinula edodes cultivar, 'Sanmaru 2ho' (표고버섯 품종 '산마루2호'를 구분할 수 있는 CAPS marker 개발)

  • Moon, SuYun;Lee, Hwa-Yong;Ka, Kang-Hyeon;Koo, Chang-Duck;Ryu, HoJin
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2018
  • In Korea, the oak mushroom (Lentinula edodes) is highly preferred by consumers in the food industry and makes up about 97.7% of the total forest mushroom production. This indicates that the oak mushroom is an important non-timber forest product in Korea. Recently, the breeding and development of new cultivars of L. edodes have been actively initiated, and the development of molecular markers that are able to identify and discriminate the new cultivars is crucial for protecting the breeder's rights. This study was carried out to develop a cleaved amplified polymorphic sequence (CAPS) marker for the identification and discrimination of a new cultivar, Sanmaru 2ho from the 37 other oak mushroom cultivars. A single nucleotide polymorphism (SNP) was identified at the $1,803,483^{rd}$ position of scaffold2 in the genome of Sanmaru 2ho. The amplified DNA containing the SNP of Sanmaru 2ho was uniquely not cleaved by the restriction enzyme, Hha I, and thus Sanmaru 2ho was successfully distinguished from the other oak mushroom cultivars.

A Set of Allele-specific Markers Linked to L Locus Resistant to Tobamovirus in Capsicum spp. (고추의 Tobamovirus 저항성 L 유전자좌와 연관된 대립유전자 특이적인 마커 세트)

  • Lee, Jun-Dae;Han, Jung-Heon;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.286-293
    • /
    • 2012
  • The resistance to Tobamovirus in Capsicum spp. has been known to be controlled by five different alleles ($L^0$, $L^1$, $L^2$, $L^3$, and $L^4$) of L locus on the telomere of long arm of pepper chromosome 11. To develop a set of molecular markers differentiating all the alleles of L locus, we used five pepper differential hosts including Capsicum annuum Early California Wonder (ECW, $L^0L^0$), C. annuum Tisana ($L^1L^1$), C. annuum Criollo de Morelos 334 (CM334, $L^2L^2$), Capsicum chinense PI 159236 ($L^3L^3$), and Capsicum chacoense PI 260429 ($L^4L^4$). Developing a series of CAPS or SCAR markers specifically linked to the alleles was allowed by the sequence comparison of PCR amplicons of the $L^3$-linked markers (189D23M, A339, and 253A1R) and BAC sequences (FJ597539 and FJ597541) in the pepper differentials. Genotypes deduced by these markers in 48 out of 53 $F_1$ hybrids of commercial pepper varieties were consistent with their phenotypes by bioassay using Tobamovirus pathotypes ($P_0$, $P_1$, and $P_{1,2$). Consequently, these markers can be useful to differentiate L alleles and for breeding Tobamovirus resistance in pepper with marker-assisted selection.

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Confirmation of Parentage of the Pear Cultivar 'Niitaka' (Pyrus pyrifolia) Based on Self-incompatibility Haplotypes and Genotyping with SSR Markers

  • Kim, Hoy-Taek;Nou, Ill-Sup
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • The parentage of the horticulturally important pear cultivar 'Niitaka' was confirmed by determining its S-genotypes based on the S-RNase and $PpSFBB^{-{\gamma}}$ genes, and genotyping using simple sequence repeat (SSR) markers. Previous reports suggested that the cultivars 'Amanogawa' and 'Imamuraaki' were the parents of 'Niitaka', although the cultivars 'Chojuro' and 'Shinchu' were also examined as candidate parents, along with two other cultivars. In the present study, the S-genotype of 'Niitaka' was determined to be $S^3S^9$. The $S^9$-RNase of 'Niitaka' was found to be likely inherited from the parent 'Amanogawa' ($S^1S^9$) and the $S^3$-RNase from 'Chojuro' ($S^3S^5$) or 'Shinchu' ($S^3S^5$). Based on the S-genotypes, the cultivar 'Imamuraaki' ($S^1S^6$) had no contribution to the parentage of 'Niitaka' ($S^3S^9$). A total of 67 polymorphic SSR markers were used to further confirm the parentage of 'Niitaka'. Discrepancies were found at several SSR loci between 'Niitaka' and the cultivars 'Imamuraaki' and 'Shinchu', whereas 'Niitaka' inherited alleles from 'Amanogawa' and 'Chojuro' at all SSR loci. Therefore, our findings established that 'Amanogawa' and 'Chojuro' are the parents of pear cultivar 'Niitaka', and not 'Imamuraaki' as previously reported.

SNP Marker Development for Purity Test of Oriental Melon and Melon (멜론 및 참외 순도 검정을 위한 SNP 마커 개발 및 F1 종자 순도 검정)

  • An, Song-Ji;Kwon, Jin-Kyung;Yang, Hee-Bum;Choi, Hye-Jeong;Jeong, Hee-Jin;Kim, Yong-Jae;Choi, Gyung-Ja;Kang, Byoung-Cheorl
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Field screening method has been commonly used for purity test of $F_1$ hybrid seeds in melon and oriental melon. However, as this method takes a lot of time and cost, molecular marker-based purity test is necessary. To develop molecular markers for purity test, thirty pairs of SNP (single nucleotide polymorphism) primers were obtained from melon EST sequences, and 10 polymorphic markers showing HRM (high resolution melting) polymorphisms between parents of two melon cultivars and one oriental melon cultivar were selected. Blind tests were performed to validate usefulness of the selected markers for purity test. Blind test results showed that HRM genotypes were matched with the expected identity of individual sample, $F_1$ hybrid, male or female parents. Three HRM-based SNP markers were converted to CAPS markers for general use which is favor to breeders. We expect that SNP markers developed in this study will be useful for purity test of $F_1$ hybrid seeds in melon and oriental melon.

Identification of a Causal Pathogen of Watermelon Powdery Mildew in Korea and Development of a Genetic Linkage Marker for Resistance in Watermelon (Citrullus lanatus)

  • Han, Bal-Kum;Rhee, Sun-Ju;Jang, Yoon Jeong;Sim, Tae Yong;Kim, Yong-Jae;Park, Tae-Sung;Lee, Gung Pyo
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.912-923
    • /
    • 2016
  • Watermelon production is often limited by powdery mildew in areas with a large daily temperature range. Development of resistant watermelon cultivars can protect against powdery mildew; however, little is known about the characteristics of its causal agents. Here, we identified the genus and race of a causal pathogen of powdery mildew in Ansung province of South Korea, and developed molecular markers for the generation of resistant watermelon cultivars. The causal pathogen was determined to be Podosphaera xanthii based on multiple sequence alignments of internal transcribed spacers (ITS) of rDNA. The physiological race was identified as 1W, and the Ansung isolate was named P. xanthii 1W-AN. Following inoculation with the identified P. xanthii 1W-AN, we found inheritance of the resistant gene fitting a single dominant Mendelian model in a segregated population ('SBA' ${\times}$ PI 254744). To develop molecular markers linked to fungus-resistant loci, random amplified polymorphic DNA (RAPD) was accomplished between DNA pooled from eight near-isogenic lines (NILs; $BC_4F_6$), originated from PI 254744 and susceptible 'SBB' watermelon. After sequencing bands from RAPD were identified in all eight NILs and PI254744, 42 sequence-characterized amplifiedregion (SCAR) markers were developed. Overall, 107 $F_2$ plants derived from $BC_4F_6$ NIL-1 ${\times}$ 'SBB' were tested, and one SCAR marker was selected. Sequence comparison between the SCAR marker and the reference watermelon genome identified three Nco I restriction enzyme sites harboring a single nucleotide polymorphism, and codominant cleavage-amplified polymorphic site markers were subsequently developed. A CAPS marker was converted to a high-resolution melt (HRM) marker, which can discriminate C/T SNP (254PMR-HRM3). The 254PMR-HRM3 marker was evaluated in 138 $F_{2:3}$ plants of a segregating population ('SBA' ${\times}$ PI254744) and was presumed to be 4.3 cM from the resistance locus. These results could ensure P. xanthii 1W-AN resistance in watermelon germplasm and aid watermelon cultivar development in marker-assist breeding programs.

Development of a CAPS Marker Derived from the Pg-Actin Gene Sequences and RAPD Markers in Platycodon grandiflorum (도라지에서의 RAPD 마커 분석과 Actin 유전자 염기서열에서 유래한 CAPS 분자표지 개발)

  • Kim, Munhwi;Jeong, Eunah;Jeong, Jeongsu;Kwon, Soontae;Jeon, Ikjo;Jeong, Jeong Hag;Lee, Je Min;Yeam, Inhwa
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.648-655
    • /
    • 2015
  • Balloon flower (Platycodon grandiflorum A. DC.) is a perennial plant of mainly Campanulaceae family, which have been widely used as a food ingredient and herbal medicine in East Asia. Although demands on related products and yearly cultivation area for balloon flower are increasing, diverse fundamental technologies and molecular breeding studies are not very well supported in Platycodons. In this study, 30 random amplification of polymorphic DNA (RAPD) primers were test in an attempt to explore genetic diversities. In addition, sequences information of the actin gene, a well conserved gene encoding a globular protein that forms microfilaments, was retrieved and analyzed. Two actin homologs were recovered; 3.4 kb fragment is a Pg-actin and 1.4 kb fragment is a Pg-actin homolog with 28.6% similarity. We have confirmed that the Pg-actin gene is configured into 4 exons and 3 introns. A single nucleotide polymorphism (SNP), G↔A, was detected on the intron 3, which served as a target for the CAPS marker development. The marker Pg-Actin-Int3 was applied to 32 balloon flower accessions. Balloon flower DNA sequence information generated in this study is expected to contribute to the analysis and molecular breeding and genetic diversity analysis of balloon flowers.