• Title/Summary/Keyword: C6 Glial Cell

Search Result 73, Processing Time 0.023 seconds

The Protective Effects of Protocatechuic Acid from Momordica charantia against Oxidative Stress in Neuronal Cells (여주 활성 물질 Protocatechuic Acid의 신경세포의 산화적 스트레스에 대한 개선 효과)

  • Choi, Jung Ran;Choi, Ji Myung;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju;Kim, Hyun Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • Protocatechuic acid is an active phenolic acid compound from Momordica charantia. In this study, we investigated the protective effect of protocatechuic acid against oxidative stress under cellular system using C6 glial cell. The oxidative stress was induced by hydrogen peroxide ($H_2O_2$) and amyloid beta 25-35 ($A{\beta}_{25-35}$), and they caused the decrease of cell viability and overproduction of reactive oxygen species (ROS). However, the treatment of protocatechuic acid significantly elevated the decreased cell viability and inhibited the overproduction of ROS by $H_2O_2$. In addition, protocatechuic acid significantly recovered the cellular damage induced by $A{\beta}_{25-35}$. In particular, protocatechuic acid at the concentration $10{\mu}g/mL$ decreased the elevated ROS level to normal level. These results indicate that protocatechuic acid may have neuroprotective effect through attenuating oxidative stress.

Effects of several herbs on the expression of MT1 and MT2 melatonin receptors in C6 glial cells (수종의 한약재 열수추출물이 멜라토닌 수용체 발현에 미치는 영향)

  • Kim, Bo-Ra-Mi;Yang, Dong-Ho;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.15-36
    • /
    • 2007
  • Objective : This study was to investigate the effects of several herbs on the levels of MT1 and MT2 melatonin receptors Methods: It was investigated the effects of several herbs such as WEDL, WEZV, WEFO, WEOC on the levels of MT1 and MT2 melatonin receptors using C6 glial cell model. ${\beta}-estradiol$ treatment, as a positive control group, under non-cytotoxic condition. Results : 1. The water extracts of Dimocarpus long (WEDL) induced the levels of MT2 melatonin receptor expression in a concentration-dependent manner without altering the levels of MT1 melatonin receptor expression. 2. The treatment with the water extract of Zizyphus vulgaris (WEZV) induced the levels of MT1 melatonin receptor expression and the levels of MT2 melatonin receptor expression was not affected. 3. The levels of MT1 as well as MT2 melatonin receptor expression were markedly up-regulated in the water extract of Fossilia ossis (WEFO) and the water extract of Ostreae caro (WEOC)-treated C6 cells. 4. The combination treatment with WEDL and WEZV induced not only the levels of MT1 melatonin receptor expression but also MT2 melatonin receptor expression, but the synergic effects of the combination treatment with WEFO and WEOC were not detected in C6 cells. Conclusion : The study provides important new insights into the possible mechanisms on the regulation of melatonin receptor synthesis by WEDL, WEZV, WEFO and WEOC.

  • PDF

Involvement of MAPKs in GDNF-induced Proliferation and Migration in Hs683 Glioma Cells

  • Song, Hyun;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.223.2-224
    • /
    • 2003
  • Glial cell-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that enhances survival of midbrain doparminergic neuron. GDNF and its receptors are widely distributed in brain and are believed to be involved in the control of neuron survival and differentiation. GDNF increased proliferation and migration of Hs683 human giloma and C6 rat giloma cells in a dose-dependent manner. (omitted)

  • PDF

Studies on Proliferation and Migration of Glioma Cells for Development of an Artificial Nerve Tubing

  • Hyun Song;Chung, Dong-June;Choung, Pill-Hoon;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.105-105
    • /
    • 2001
  • In an attempt to provide useful information on the development of an artifitial nerve tubing, proliferative and migrative properties of two glioma cell lines, C6 rat glioma cells and Hs683 human glioma cells, were examined. The present study shows that C6 cells proliferated more rapidly than Hs683 cells. The Hs683 cells are more adequate for the development of nerve tubing since unlike C6 cells, they are of human origin and known to be non-tumorigenic. In order to enhance proliferative and migrative abilities of Hs683 cells for the application as an artificial nerve tubing, we studied the effect of glial cell-derived neurotrophic factor (GDNF) on Hs683 cells. Cells were seeded in the scaffolds (polymer constructs), fabricated with type I collegen and alginate modified with cinnamoyl moiety, in the presence or absence of GDNF Stimulatory effect of GDNF on the proliferation and migration of Hs683 cells cultured in the scaffolds is currently under investigation. In addition, possible neuroprotective activities of natural products which inhibit staurosporine-induced apoptosis of glioma cells are also being studied.

  • PDF

Protective Effects of Samul-tang on Cell Death Inducded by Oxidative Stress in C6 Glial Cell (사물탕이 산화적 스트레스에 의하여 유발되는 신경세포의 세포 사멸에 미치는 보호효과)

  • Kim, Hyung-Woo;Kim, Kyung-Yoon;Kim, Gye-Yep;Kim, Chae-Hyun;Jeong, Jong-Gil;Choi, Chan-Hun;Hwang, Gui-Seong;Lee, Sang-Yeong;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.969-973
    • /
    • 2009
  • Samul-tang (SMT), which was firstly described in (Hwajegukbang) Song dynasty, is well known remedy for blood diseases in Oriental medicine. SMT is traditional herbal-remedy composed of Rehmanniae Radix Preparat, Angelicae Gigantis Radix, Cnidii Rhizoma and Paeoniae Radix. Recently, SMT has known to have anti-oxidative action. However, the reports on anti-oxidantic action in neuroglial cells are rare. In addition, the exact mechanisms are unclear. For these reasons, we investigated the protective effects of SMT on cell death induced by oxidative stress using C6 glioma cells. In our results, SMT accelerated proliferation rates of C6 cells in vitro. In addition, levels of LDH release induced by oxidative stress were lowered by treatment with SMT. Finally, protective effects on cell death induced by chemicals such as paraquat and rotenone were observed. In conclusion, these results suggest the possibility to protect brain cell or neuronal cell from damage induced by oxidative stress.

Effects of Flavonoids and Their Glycosides on Oxidative Stress in C6 Glial Cells (Flavonoids 및 그 배당체의 산화적 스트레스에 대한 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1371-1377
    • /
    • 2019
  • Oxidative stress induced by the over-production of reactive oxygen species (ROS) in the brain is the most common cause of neurodegenerative diseases such as Alzheimer's. In the present study, we investigated the protective effects of flavonoids and their glycosides, namely kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-β-D-glucoside, against H2O2-induced oxidative stress in the C6 glial cells. The H2O2-treated glial cells exhibited decreased cell viability and increased ROS production when compared with normal cells. However, cells treated with each of the four flavonoids/glycosides demonstrated significantly increased viability and suppressed ROS production when compared with the H2O2-treated control group. These results indicate that flavonoids/glycosides attenuate oxidative stress induced by H2O2 in C6 glial cells. To confirm the protective molecular mechanisms, we measured pro-inflammatory factors such as inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. H2O2 treatment was seen to elevate these factors and decrease IκB-α in the C6 glial cells, while the flavonoids/glycosides induced a down-regulation of the pro-inflammatory factors and increased IκB-α, indicating a neuroprotective effects through attenuation of the inflammation. In particular, quercetin and its glycoside showed a higher neuroprotective effect than the kaempferol treatments. These results suggest that these flavonoids and their glycosides could be promising therapeutic agents for neurodegenerative diseases via the attenuation of oxidative stress.

Influence of Aspirin on Pilocarpine-Induced Epilepsy in Mice

  • Jeong, Kyoung Hoon;Kim, Joo Youn;Choi, Yun-Sik;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • Aspirin (acetylsalicylic acid) is one of the most widely used therapeutic agents based on its pharmacological actions, including anti-inflammatory, analgesic, anti-pyretic, and anti-thrombotic effects. In this study, we investigated the effects of aspirin on seizure susceptibility and hippocampal neuropathology following pilocarpine-induced status epilepticus (SE). SE was induced by pilocarpine hydrochloride (280 mg/kg, i.p.) administration in C57BL/6 mice (aged 8 weeks). Aspirin was administered daily (15 mg/kg or 150 mg/kg, i.p.) for 10 days starting 3 days before SE, continuing until 6 days after SE. After pilocarpine injection, SE onset time and mortality were recorded. Neuronal cell death was examined using cresyl violet and Fluoro-Jade staining, and glial responses were observed 7 days post SE using immunohistochemistry. In the aspirin-treated group, the onset time of SE was significantly shortened and mortality was markedly increased compared to the control group. However, in this study, aspirin treatment did not affect SE-induced neuronal cell death or astroglial and microglial responses in the hippocampus. In conclusion, these results suggest that the safety of aspirin should be reevaluated in some patients, especially with neurological disorders such as temporal lobe epilepsy.

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

The Effects of Jujadokseo-hwan on the Activation of Brain and Neuroprotactive Effects (주자독서환의 뇌기능 활성 및 신경세포 보호효과)

  • Lee, Yu-Gyung;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.241-262
    • /
    • 2009
  • Objectives This study is designed to investigate the effects of Jujadokseo-hwan on the brain ability and inducing oxidative stresses. Methods We measured the changes of regional cerebral blood flow and mean arterial blood pressure. Then we analyzed histological examination, immunohistochemistric response and anti-oxidant activity of Jujadokseo-hwan. Results 1. Treatment of Jujadokseo-hwan significantly increased regional cerebral blood flow but decreased mean arterial blood pressure. 2. Treatment of Jujadokseo-hwan-induced increase of regional cerebral blood flow was significantly inhibited by pretreatment with indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. 3. In histological examination through TTC stain, group I was no change, but group II showed that discolored in the most cortical part. Group III showed that decreased discolor in the cortical part. 4. In immunohistochemistric response of BDNF, group II showed that lower response effect. Group III showed that increase response effect. 5. Treatment of Jujadokseo-hwan increased proliferation rates of Glial cell effectively 6. Treatment of Jujadokseo-hwan accelerated proliferation rates of C6 cells in vitro. In addition, protective effects on cell death induced by paraquat, rotenone and hydrogen peroxide. In addition, activity of SOD were increased by treatment with Jujadokseo-hwan. Conclusions In conclusion, Jujadokseo-hwan can improve of the brain ability, learning ability, memory ability and induce ischemic brain injuries.

  • PDF