Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.12.1371

Effects of Flavonoids and Their Glycosides on Oxidative Stress in C6 Glial Cells  

Kim, Ji Hyun (Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University)
Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology)
Cho, Eun Ju (Department of Food Science and Nutrition, and Kimchi Research Institute, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.12, 2019 , pp. 1371-1377 More about this Journal
Abstract
Oxidative stress induced by the over-production of reactive oxygen species (ROS) in the brain is the most common cause of neurodegenerative diseases such as Alzheimer's. In the present study, we investigated the protective effects of flavonoids and their glycosides, namely kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-β-D-glucoside, against H2O2-induced oxidative stress in the C6 glial cells. The H2O2-treated glial cells exhibited decreased cell viability and increased ROS production when compared with normal cells. However, cells treated with each of the four flavonoids/glycosides demonstrated significantly increased viability and suppressed ROS production when compared with the H2O2-treated control group. These results indicate that flavonoids/glycosides attenuate oxidative stress induced by H2O2 in C6 glial cells. To confirm the protective molecular mechanisms, we measured pro-inflammatory factors such as inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. H2O2 treatment was seen to elevate these factors and decrease IκB-α in the C6 glial cells, while the flavonoids/glycosides induced a down-regulation of the pro-inflammatory factors and increased IκB-α, indicating a neuroprotective effects through attenuation of the inflammation. In particular, quercetin and its glycoside showed a higher neuroprotective effect than the kaempferol treatments. These results suggest that these flavonoids and their glycosides could be promising therapeutic agents for neurodegenerative diseases via the attenuation of oxidative stress.
Keywords
Kaempferol; kaempferol-3-O-glucoside; oxidative stress; quercetin; quercetin-3-${\beta}$-D-glucoside;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Halliwell, B. and Gutteridge, J. M. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501-514.   DOI
2 Jazvinscak Jembrek, M., Vukovic, L., Puhovic, J., Erhardt, J. and Orsolic, N. 2012. Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. J. Mol. Neurosci. 47, 286-299.   DOI
3 Jeong, C. H., Kim, J. H., Choi, G. N., Kwak, J. H., Kim, D. O. and Heo, H. J. 2010. Protective effects of extract with phenolics from Camellia (Camellia japonica) leaf against oxidative stress-induced neurotoxicity. Food Sci. Biotechnol. 19, 1347-1353.   DOI
4 Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X. Y., He, F., Xu, J. and Wang, H. Q. 2016. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/$GSK3{\beta}$ signaling pathways in HT22 hippocampal neurons. PLoS One 11, 0152371.
5 Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J. and Kim, G. Y. 2013. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-${\kappa}B$ pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 17, 808-813.   DOI
6 Kouhestani, S., Jafari, A. and Babaei, P. 2018. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural. Regen. Res. 13, 1827-1832.   DOI
7 Lee, A. Y., Wu, T. T., Hwang, B. R., Lee, J., Lee, M. H., Lee, S. and Cho, E. J. 2016. The neuro-protective effect of the methanolic extract of Perilla frutescens var. japonica and rosmarinic acid against $H_2O_2$-induced oxidative stress in C6 glial cells. Biomol. Ther. 24, 338-345.   DOI
8 Lowenstein, C. J., Dinerman, J. L. and Snyder, S. H. 1994. Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120, 227-237.   DOI
9 Malar, D. S. and Devi, K. P. 2014. Dietary polyphenols for treatment of Alzheimer's disease-future research and development. Curr. Pharm. Biotechnol. 15, 330-342.   DOI
10 Meffert, M. K. and Baltimore, D. 2005. Physiological functions for brain NF-kappaB. Trends Neurosci. 28, 37-43.   DOI
11 Minghetti, L. 2004. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901-910.   DOI
12 Ramalingam, M. and Kim, S. J. 2014. Insulin on hydrogen peroxide-induced oxidative stress involves ROS/Ca2+ and Akt/Bcl-2 signaling pathways. Free Radic. Res. 48, 347-356.   DOI
13 Aid, S. and Bosetti, F. 2011. Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie 93, 46-51.   DOI
14 Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63.   DOI
15 Park, S. B., Lee, D. S., Kang J. Y., Kim, J. M., Park, S. K. Kang, J. E., Kwon, B. S., Park, S. H. Lee, C. J. and Heo, H. J. 2017. Protective effect on neuronal cells of Orostachys japonicus A. Berger extract against reactive oxygen species-induced neuronal cytotoxicity and active compounds. Kor. J. Food Sci. Technol. 49, 524-531.   DOI
16 Park, S. E., Sapkota, K., Kim, S., Kim, H. and Kim, S. J. 2011. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol. 164, 1008-1025.   DOI
17 Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J. and Valko, M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592-607.   DOI
18 Reed, T. T. 2011. Lipid peroxidation and neurodegenerative disease. Free Radic. Biol. Med. 51, 1302-1319.   DOI
19 Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G. and Bishayee, A. 2017. Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv. Protein Chem. Struct. Biol. 108, 33-57.   DOI
20 Sies, H. 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291-295.   DOI
21 Denny Joseph, K. M. and Muralidhara. 2013. Enhanced neuroprotective effect of fish oil in combination with quercetin against 3-nitropropionic acid induced oxidative stress in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 83-92.   DOI
22 Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.   DOI
23 Cathcart, R., Schwiers, E. and Ames, B. N. 1984. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay. Methods Enzymol. 105, 352-358.   DOI
24 Chen, T. J., Jeng, J. Y., Lin, C. W., Wu, C. Y. and Chen, Y. C. 2006. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 223, 113-126.   DOI
25 DiGuiseppi, J. and Fridovich, I. 1984. The toxicology of molecular oxygen. Crit. Rev. Toxicol. 12, 315-342.   DOI
26 Gitika, B., Sai Ram, M., Sharma, S. K., Ilavazhagan, G. and Banerjee, P. K. 2006. Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic. Res. 40, 95-102.   DOI
27 Xiao, J. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 57, 1874-1905.
28 Spasojevic, I., Bajic, A., Jovanovic, K., Spasic, M. and Andjus, P. 2009. Protective role of fructose in the metabolism of astroglial C6 cells exposed to hydrogen peroxide. Carbohydr. Res. 344, 1676-1681.   DOI
29 Takashima, M., Ichihara, K. and Hirata, Y. 2019. Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells. Food Chem. Toxicol. 132, 110669.   DOI
30 Thapa, A. and Carroll, N. J. 2017. Dietary modulation of oxidative stress in Alzheimer's disease. Int. J. Mol. Sci. 18, 1583.   DOI
31 Yang, E. J., Kim, G. S., Jun, M. and Song, K. S. 2014. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct. 5, 1395-1402.   DOI
32 Youn, Y., Kim, H. Y., Park, H. M., Lee, S. H., Park, J. R., Hong, S. G. and Kim, Y. G. 2015. Protective effects of mulberry (Morus alba) sugar extracts on hydrogen peroxide- induced oxidative stress in HepG2 cell. Kor. J. Food Preserv. 22, 751-757.   DOI
33 Salim, S. 2017. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 360, 201-205.   DOI
34 Zhang, X., Wu, J. Z., Lin, Z. X., Yuan, Q. J., Li, Y. C., Liang, J. L., Zhan, J. Y., Xie, Y. L., Su, Z. R. and Liu, Y. H. 2019. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnen against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. J. Ethnopharmacol. 234, 44-56.   DOI
35 Yu, L., Chen, C., Wang, L. F., Kuang, X., Liu, K., Zhang, H. and Du, J. R. 2013. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-${\kappa}B$ and STAT3 in transient focal stroke. PLoS One 8, 55839.   DOI
36 Zaplatic, E., Bule, M., Shah, S. Z. A., Uddin, M. S. and Niaz, K. 2019. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci. 224, 109-119.   DOI
37 Zhang, S., Qi, Y., Xu, Y., Han, X., Peng, J., Liu, K. and Sun, C. K. 2013. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem. Int. 63, 522-532.   DOI