• Title/Summary/Keyword: C/N ratio control

Search Result 396, Processing Time 0.027 seconds

Effect of C/N Ratio on Composting Treatment of TNT-Contaminated Soil

  • In, Byung-Hoon;Park, Joon-Seok;NamKoong, Wan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.578-584
    • /
    • 2006
  • This research was conducted to estimate the effect of C/N ratio control on composting of TNT (2,4,6 trinitrotoluene)-contaminated soil. Glucose or acetone was selected to control C/N ratio of the contaminated soil. The C/N ratios of the controlled experiment and no controlled one were 26.0 and 6.6, respectively. During 45days, the degradation efficiency (96.0 or 91.8%) of acetone or glucose C/N ratio controlled soil was higher than that (78.4%) of no C/N ratio controlled case. The first order degradation rate constant of glucose or acetone C/N ratio control was 0.0641 or 0.0820/day. This constant was over twice 0.0356/day of no C/N ratio control. The C/N ratio control with glucose or acetone also showed a rather high $CO_2$ evolution than that without C/N ratio control. It was proven that C/N ratio control for composting of TNT-contaminated soil improved the treatment efficiency.

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • 박진식;안철우;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The result are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 39%(kudzu), 37%(sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/N ratio 25 indicated $68^{\circ}C$(kudzu), $70^{\circ}C$(sawdust). Optimum condition of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation gravitationally dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively. Major biological reaction in the aerobic fermentation feed production occurred during 12~24hrs.

  • PDF

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • Park, Jin Sik;An, Cheol U;Mun, Chu Yeon
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.23-23
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The results are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 3994(kudzu), 37%( sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/n ratio 25 indicated 68'C(kudzu), 70'C (sawdust).Optimum condition of consists of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation of gravitationally, dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively Major biological reaction in the aerobic fermentation feed production occurred during 12~14hrs

A Basic Experimental Study on Composting of Garbage Wastes by Coconut Peat (코코넛 피트를 이용한 음식물 쓰레기의 퇴비화 기초실험)

  • Huh, Mock;Han, Ji-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • This study was performed about composting in a batch reactor of laboratory scale using garbage waste and swine waste. Sawdust and coconut peat were materials to control optimum moisture, C/N ratio and specific gravity in the study. Comparing compost using only sawdust with compost using sawdust and coconut peat, the latter was higher at reduction rate and decomposition rate. Coconut peat was accelerated aerobic fermentation, because it had moisture holding ability, initial moisture was low, ventilation was good and control of optimum specific gravity was possible. Compost by only garbage waste was under standard of manure. but mixtures in same proportion of garbage waste and swine waste producted high quality compost. CEC value was average 63.8me/100g. The initial C/N ratio of compost was regulated effectively because of high C/N ratio of sawdust. As the C/N ratio(>40) was higher, reduction rate was higher. During the composting C/N ratio was improved more and more.

  • PDF

Development of Organic Fertilizer based on Cow dung I. Studies on Fermentation condition (우분(牛糞)의 유기질비료과(有機質肥料化) 연구(硏究) I. 부숙조건(腐熟條件)에 관(關)한 연구(硏究))

  • Lim, Dong-Kyu;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.130-136
    • /
    • 1991
  • This study was carried out under the appropriate conditions of moisture content(60~70%), C/N ratio(25~30), and C/P ratio(30~35) on the mixed materials of cow dung and rice hulls. The good mixing ratio of cow dung and rice hulls was woth to one on volume basis which was able to adjust to the moisture content and C/N ratio of the mixing material. During fermentation pile period, the mixing ratio of control, non-aerated pile with turning was two to one and that of aerated pile with blower was two ti one. In fermentation pile period, average temperature of aerated pile was $55{\sim}65^{\circ}C$ and it was more higher than control of $40{\sim}50^{\circ}C$ non-aerated pile. While total nitrogen content of aerated pile was lower than that of the control, total carbon content and C/N ratio were higher. In cure pile period, the temperature and C/N ratio of aerated pile were increased at the early stage and then they were decreased, but total nitrogen and total carbon contents of aerated pile were increased in process of days. Final product in aerated pile had more fine particles and was good for the growth of cucumber seedlings than control.

  • PDF

Carbon and Nitrogen Responses of Litterfall Components by NPK and PK Fertilizers in a Red Pine (Pinus densiflora S. et Z.) Stand

  • Park, Seong-Wan;Baek, Gyeongwon;Kim, Seongjun;Yang, A-Ram;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study was conducted to determine the carbon (C) and nitrogen (N) response of litterfall components as affected by N addition in compound fertilizer in a Korean red pine (Pinus densiflora S. et Z.) stand in southern Korea. Litterfall in a mature red pine stand was collected for two years following compound fertilizer application ($N_3P_4K_1$; $P_4K_1$) and no fertilization (control). The C concentration of litterfall components was not significantly (P > 0.05) different between the $N_3P_4K_1$ and the control plots, whereas the N concentration of the litterfall components was significantly higher in the $N_3P_4K_1$ plot than in the control plot. The $N_3P_4K_1$ and $P_4K_1$ additions induced a lower C/N ratio of litterfall components compared with the control plot. Annual C and N fluxes via litterfall components were not affected by the $N_3P_4K_1$ addition over the study period, except for reproduction litter. Annual N fluxes via reproduction litter were significantly higher in the $N_3P_4K_1$ plot than in the control plot. Thus, the $N_3P_4K_1$ and $P_4K_1$ additions could modify differently nutrient distribution of the forest floor and mineral soils in a red pine stand. These results indicate that N concentration and C/N ratio in litterfall components are more susceptible to fertilizer application than the C response in litterfall components.

Effect of Pile Temperature Control on Changes of Physicochemical Parameters of Composted Poultry Waste (계분의 콤포스터 처리시 내부온도 조절이 생산물의 물리·화학적 성상에 미치는 영향)

  • Kwak, Wansup;Kim, Taegyu;Kim, Changwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.39-51
    • /
    • 1994
  • When broiler litter was composted under the control of peak temperature of piles(uncontrolled, controled below $70^{\circ}C$ and below $60^{\circ}C$), changes of physical and chemical parameters were determined throughout the processing period. Broiler litter was composted in each of three $1.0{\times}1.0{\times}1.2m$ dimensional facilities for 8 weeks. After 5 to 6 weeks of composting, broiler litter was converted into the final compost with no ammonia odour, rice hull size of particle, and faint brown color. Central temperature of piles reached to the peak(about $69{\sim}70^{\circ}C$) within 3 to 4 days after composting and gradually decreased thereafter. The final product contained 26.5% of moisture, 9.0~9.1 of pH, and 14.0~14.3 of C/N ratio. The increase of C/N ratio with processing resulted from the considerable loss of N. The total wet weight of the final composts was an average of 38.3% of the initial weight, the dry weight of those 64.1%, and the organic matter weight of those 34.8%. Treatments of central temperature of composts did not affect changes of moisture, pH, C/N ratio, total wet weight, total dry weight, and total organic matter weight. In general, composted broiler litter was converted into the final product with little change in physical and chemical parameters after 5 to 6 weeks of processing. Nitrogen losses during the composting should be prevented for the improvement of the composting efficiency of broiler litter.

  • PDF

Optimization of Operational Conditions of Existing BNR Process with Various C/N Ratio using Simulation Method (시뮬레이션 기법을 이용한 기존 BNR공정의 C/N비 변화에 따른 운전조건 최적화)

  • Rho, Hae-Yeon;Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.367-370
    • /
    • 2007
  • Numerous sets of simulation were conducted in order to find out the optimum operational conditions of the existing BNR process using GPS-X program. The model of ASM3 and modified Bio-P module were applied for simulations. From the result of this study, effluent quality was closely related with the step feeding rate and influent C/N ratio. The effluent TN concentration seemed to be significantly affected by step feeding rate at the low C/N condition. But at the high C/N condition, the effluent concentration of TP rather than that of TN was affected by the control of step feeding rate.

Effect of n-6/n-3 fatty acid ratio on metabolic partitioning in hyperlipidemic rats (n-6/n-3 지방산 비율이 고지혈증 랫드의 지질대사 분할에 미치는 영향)

  • Lee, Seunghyung;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.643-653
    • /
    • 2018
  • This study was investigated the mechanism of action of n-6/n-3 fatty acid ratio on the metabolic partitioning of blood glycerolipids by in vivo monitoring technique in hyperlipidemic animal model rats. The ratio of cholesteryl 14C-oleate metabolized in the liver of total glycerolipids was lower in the order of n-6/n-3 ratios of 4:1, 15:1, 30:1 and control group (p<0.05). The secretion amount of phospholipid was higher in the order of n-6/n-3 ratio 4:1, 15:1, 30:1 than the control (p<0.05). The secretion amount of triglyceride was lower in especially 4:1, in order of n-6/n-3 4:1, 15:1 and 30:1 compared with the control. The ratio of phospholipid partitioning to total glycerolipid was high in orfer of n-6/n-3 ratio 4:1, 15:1, 30:1 and control (p<0.05). The triacylglycerol partitioning (%) via liver was higher 72.97, 75.93, 78.12% in n-6/n-3 4;1, 15:1, 30:1, respectively than the control of 82.25%, according to increased n-6/n-3 (p<0.05). The phospholipid partitioning (%) was lower 25.15, 18.87, 18.15% in n-6/n-3 4;1, 15:1, 30:1, respectively, compared to control 11.04%, according to increased n-6/n-3 (p<0.05).

Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants

  • Jeong, Heon-Mo;Kim, Hae-Ran;Hong, Seungbum;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: In the study, the effects of elevated $CO_2$ and temperature on the nitrogen content, carbon content, and C:N ratio of seven rare and endangered species (Quercus gilva, Hibiscus hambo, Paliurus ramosissimus, Cicuta virosa, Bupleurum latissimum, Viola raddeana, and Iris dichotoma) were examined under control (ambient $CO_2$ + ambient temperature) and treatment (elevated $CO_2$ + elevated temperature) for 3 years (May 2008 and June 2011). Results: Elevated $CO_2$ concentration and temperature result in a decline in leaf nitrogen content for three woody species in May 2009 and June 2011, while four herb species showed different responses to each other. The nitrogen content of B. latissimum and I. dichotoma decreased under treatment in either 2009 and 2011. The leaf nitrogen content of C. virosa and V. raddeana was not significantly affected by elevated $CO_2$ and temperature in 2009, but that of C. virosa increased and that V. raddeana decreased under the treatment in 2011. In 2009, it was found that there was no difference in carbon content in the leaves of the six species except for that of P. ramosissimus. On the other hand, while there was no difference in carbon content in the leaves of Q. gilva in the control and treatment in 2011, carbon content in the leaves of the remaining six species increased due to the rise of $CO_2$ concentration and temperature. The C:N ratio in the leaf of C. virosa grown in the treatment was lower in both 2009 and 2011 than that in the control. The C:N ratio in the leaf of V. raddeana decreased by 16.4% from the previous year, but increased by 28.9% in 2011. For the other five species, C:N ratios increased both in 2009 and 2011. In 2009 and 2011, chlorophyll contents in the leaves of Q. gilva and H. hamabo were higher in the treatment than those in the control. In the case of P. ramosissimus, the ratio was higher in the treatment than that in the control in 2009, but in 2011, the result was the opposite. Among four herb species, the chlorophyll contents in the leaves of C. virosa, V. raddeana, and I. dichotoma did not show any difference between gradients in 2009, but decreased due to the rise of $CO_2$ concentration and temperature in 2011. Leaf nitrogen and carbon contents, C:N ratio, and chlorophyll contents in the leaves of seven rare and endangered species of plant were found to be influenced by the rise and duration of $CO_2$ concentration and temperature, species, and interaction among those factors. Conclusions: The findings above seem to show that long-term rise of $CO_2$ concentration, and temperature causes changes in physiological responses of rare and endangered species of plant and the responses may be species-specific. In particular, woody species seem to be more sensitive to the rise of $CO_2$ concentration and temperature than herb species.