Journal of the Korean Operations Research and Management Science Society
/
v.32
no.1
/
pp.27-51
/
2007
We analyze the effects of the sellers' strateiges on the final bid prices in internet auctions. We focus on the following three strategies of the seller adoption of the buy-price, setting the starting bid price, and adoption of 'the effective fixed price' which means that the starting bid price is set near the buy-price. In addition, the number of units sold single-unit or multi-unit, and item characteristics, such as whether the food is a search product (functional product) or an experience product (non-functional product), are also considered. We use real data on bids for 4 items from an online auction site. We find that in an auction for experience products when sold as single units, adopting the buy-price strategy raises the final bid price. We also find that in multi-unit auctions, starting the auction at 'the effective fixed price' raises the final bid price.
Proceedings of the Korean Statistical Society Conference
/
2005.05a
/
pp.277-283
/
2005
In general, stock prices do not follow normal distributions and mean trend indexes, volatility indexes, and volume indicators relating to these non-normal stock price are widely used as buy-sell strategies. These general buy-sell strategies are rather intuitive than statistical reasoning. The non-normality problem can be solved by normalizing process and statistical buy-sell strategy can be obtained by using mean trend and volatility indexes together with normalized stock prices. In this paper, buy-sell strategy based on mean trend and volatility index with normalized stock prices are proposed and applied to KOSPI200 data to see the feasibility of the proposed buy-sell strategy.
Journal of the Korea Society of Computer and Information
/
v.12
no.6
/
pp.11-20
/
2007
Even though much research has been performed to recommend favorite items to the buyers in the internet shopping mall, to the best of our knowledge. it is hard to find previous research on the recommendation of buy points. In this paper, we propose a method which can be used to recommend buy points of an item to the buyers. To do this, a database containing normalized price patterns is constructed from the archive of past prices. Then, the future price pattern is retrieved from the database based on the similarity. Here, regression analysis is used to find and analyze the elements that affect the price. We also present performance results showing that the proposed method can be useful for shopping malls.
Journal of the Korean Operations Research and Management Science Society
/
v.35
no.4
/
pp.17-31
/
2010
This study investigates two-stage return policy and recycling issues in an e-marketplace supply chain consisting of consumers, a retailer and a manufacturer. The manufacturer, a focal company in the e-marketplace supply chain, considers the recycling of commercial returns so offers the retailer a buy-back contract of which transfer payment consists of a wholesale price and a buy-back price. Then, under the given contract offer, the retailer determines a selling price and a return policy to control consumers' demand and return requests. We consider the retailer's opportunistic behavior and supply chain coordination issues based on the principal-agent paradigm. We compare the first-best and second-best optima and conduct comparative static analyses to evaluate the performance results of the buy-back contract and provide important managerial implications.
Journal of the Korean Operations Research and Management Science Society
/
v.32
no.1
/
pp.15-26
/
2007
This study analyzes revenue-maximizing strategies of online auction sellers in terms of setting up starting bids and buy-it-now options. To this end, a series of field experiments is conducted where women's hair accessories of unique designs are listed in an established online auction site. The results of the experiments argue that high starting bids could increase sellers' revenue while buy-it-now options have no significant effects. Our findings suggest that online auction sellers listing items with uncertain demand - mainly individual sellers - should be cautious with auction tips which generally support low starting buds.
The purpose of this study was to examine the effect of price-attitude toward apparel products on shopping values and consumption behavior. The study was carried out in Deagu and Kyungbook area. Applying the convenience sampling, total 326 questionnaire were collected from university students who were randomly selected as participants. This study used frequency, factor analysis, reliability analysis, regression analysis, and t-test for data analysis. The finding are as follows. Price-attitude toward apparel products was categorized into information leading, price dignity, price discount, list price orientation, quality value and using coupons. Shopping tendency factors were found as pursuit of pleasure, pursuit of sociality, and pursuit of economic feasibility. Consumption behavior factors were categorized into impulsive buying, ostentatious consumption, utilization of internet information, possession of material and brand trust. Price-attitude toward apparel products had a significant effect on shopping values and consumption behavior. University students seemed to consider the value of money to be very important as well as economic feasibility. They utilized information from the internet to buy products with good quality and showed high usage level of coupons. And, university students who buy at a least price tried to show dignity with expensive brand products and they consider those brands express self-confidence.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.4
/
pp.103-108
/
2021
It is difficult to predict an increase or decrease of stock price because of uncertainty. Researches for prediction of stock price using AI technology have been done for a long time. Recently stock buy/sell recommend programs called by Robot Advisor using AI machine learning technology are used. In this paper, to develop a stock buy/sell recommend system using AI technology, an core engine of this system is designed. An analysis and design method of a stock buy/sell recommend system software using AI machine learning technology will be presented by showing user requirement analysis using object-oriented analysis method, flowchart and screen design.
The purpose of this study is to identify the combinated factors of leaf mustard kimchi which confer the highest utility on tourists, and to establish the relative factors of importance in terms of tourists' contribution to total utility to their tour purpose. Conjoint model, $X^2$ analysis, Max. Utility model, BTL model, Logit model, K-means cluster analysis, and one-way ANOVA analysis are used for this study. The findings from this study are as follows: First, the Pearson's R and Kendall's tau($\tau$) statistics shows that the model fits the data well to the tourists' visit purpose. Second, when they choose a sightseeing place, tourists' taste for food renowned in the local area is a very important factor. Third, the leaf mustard kimchi some tourists most prefer has light red color and mild taste, and they buy it in a shaped packing, at a cheap price and directly at the kimchi factory. The leaf mustard kimchi the other tourists most prefer has light red color and highly pungent taste, and they buy it in a shaped packing, at a cheap price and directly at the kimchi factory. Fourth, by the results of BTL model and Logit Model analysis, some tourists most prefer an experimental model of leaf mustard kimchi which has light red color and mild taste. They want to buy it in a shaped packing, at a cheap price and directly at the kimchi factory. The other tourists most prefer an experimental model of leaf mustard kimchi which has light red color and highly pungent taste. They want to buy it in a shaped packing, at a cheap price and directly in the kimchi factory. Finally, the writer hopes this study will provide the kimchi marketers with some insights into the types of popular leaf mustard kimchi designs that could be successfully developed.
Journal of the Korean Society of Clothing and Textiles
/
v.21
no.2
/
pp.357-367
/
1997
The success of apparel goods mainly depends on the purchase behavior of end use consumers. The decision making processes of apparel merchandise are very complicated according to the many information cues available to the consumers. The country-of-origin is one of the extrinsic cues to affect the consumers 'decision. To study the effect of country -of-origin, the Polo style knit shirts were chosen as stimuli to the male and the female subjects (total 527) aged from 18 to 35. The identical nine shirts (3 countries$\times$3 levels of price) were carefully manipulated for the treatments. The three countries labelled are Italy as industrialized country, China as less developed one, and Korea. In addition to the country-of -origin, the prices of the shirts were exposed to the respondents. The price levels were 14,000 won for the low, 39,000 won for the moderate, and 64,000 won for the high price level. The findings were as follows: 1) As price was increased, the perceived value and purchase intention were decresed. Price was not statistically significant to perceived quality, but it was significant to perceived value and willingness to buy. 2) The merchandise of "Made in Italy" was evaluated higher than those of "Made in Korea" and "Made in China" The country-of-origin had statistically significant influences on the perceived quality, perceived value and also willingness to buy. 3) The interaction between the two factors, country-of-origin and price, was not observed.n and price, was not observed.
When a customer wants to buy an item at the Internet shopping mall, one of the difficulties is to decide when to buy the item because its price changes over time. If the shopping mall can be able to recommend appropriate buying points, it will be greatly helpful for the customer. Therefore, in this presentation, we propose a method to recommend buying points based on the time series analysis using a database that contains past prices data of items. The procedure to provide buying points for an item is as follows. First, we search past time series patterns from the database using normalized similarity, which are similar to the current time series pattern of the item. Second, we analyze the retrieved past patterns and predict the future price pattern of the item. Third, using the future price pattern, we recommend when to buy the item.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.