• Title/Summary/Keyword: Butane

Search Result 329, Processing Time 0.025 seconds

Biodegradation of Gasoline Oxygenate MTBE(Methyl tert-Butyl Ether) by Butane-Utilizing Bacteria (부탄분해미생물에 의한 가솔린첨가제 MTBE(Methyl tert-Butyl Ether) 분해)

  • 장순웅;백승식;이시진
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.31-41
    • /
    • 2001
  • In this study, we have examined the potential degradation of MTBE(methyl tert-butyl ether) by pure culture ENV425 and mixed culture obtained from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown on n-butane. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane monooxygenase. These cultures grown on n-butane generated TBA (tert-butyl alcohol) as a metabolite of MTBE oxidation. TBA Production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. In resting cell experiments, however, TBA and TBF were detected as the oxidation products of MTBE by ENV425 and mixed culture. The observed maximal MTBE degradation rates were 52.3 and 62.3 (nmol MTBE degraded/hr/mg TSS) by ENV425 and mixed culture, respectively, and the observed maximal transformation yields ($T_y$) were 44.7 and 34.0 (nmol MTBE degraded/$\mu$mol n-butane utilized), and the observed maximal transformation capacities ($T_c$) were 199 and 226 ($\mu$mol MTBE degraded/mg TSS used).

  • PDF

Cometabolic Biodegradation of Fuel Additive Methyl tert-Butyl Ether(MTBE) by Propane- and Butane-Oxidizing Microorganisms (프로판 및 부탄 이용 미생물에 의한 휘발유 첨가제 MTBE의 동시분해)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.45-52
    • /
    • 2003
  • A gas-substrate degrading bacterium, Nocardia SW3, was isolated from the gasoline contaminated aquifer using propane and butane as carbon and energy sources. We have examined the effects of substrate concentration, temperature and pH on the gas substrate degradation as well as MTBE cometabolic degradation. The result for the effect of substrate concentration showed that the maximum degradation rates of propane and butane were 30.6 and 25.4 (n㏖/min/mg protein) at 70 $\mu$㏖, respectively. The optimum temperature and pH for the degradation of gas substrate were $30^{\circ}C$ and 7, respectively. Substrate degradation activity, however, was still active in broad range of pH from 5 to 8 and temperature between $15^{\circ}C$and$35^{\circ}C$. The degradation activity of Nocardia SW3 for the MTBE was similar to the both substrates. The observed maximal transformation yields ($T_y$) were 46.7 and 35.0 (n㏖ MTBE degraded $\mu$㏖ substrate utilized), and the maximal transformation capacities ($T_c$) were 320 and 280 (n㏖MTBE degraded/mg biomass used) for propane and butane oxidizing activity on MTBE, respectively. And also, TBA was detected as by-product of MTBE and it was continuously degraded further.

Reactions of n-Butane of Pd-Zeolite Y Catalyst (Pd-Zeolite Y 촉매에서의 n-Butane의 반응)

  • Chon Hakze;Oh Seung Mo
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.161-164
    • /
    • 1979
  • The effect of acidity and the metal surface area of the Pd loaded zeolite catalysts; prepared from $Ca^{2+}-,\;La^{3+}-,\;NH_4^+-$exchanged Y and dealuminated HY was studied for the reaction of n-butane. The amount of strong acid site determined by the temperature programmed desorption of ammonia increased in the order NaY < CaY < LaY. Total amount of acid site decreased with increasing degree of dealumination, but the portion of strong acid site increased with increasing $SiO_2/Al_2O_3$ ratio. The effective metal surface area determined by the CO adsorption technique was large for those zeolite catalysts having strong acidity. It was found that conversion of n-butane was strongly dependent on the acidity and the effective metal surface area of the catalysts. The fact that the conversion of n-butane was proportional to the effective metal surface area suggests that the dehydrogenation by metallic component is the primary step in the reaction of n-butane.

  • PDF

Zeolite Membrane for High Temperature Gas Separation

  • Li, G.;Kikuchi, E.;Matsukata, M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • The present study reports the preparation of a compact ZSM-5 membrane showing high thermal stability and high separation factors, especially n-/i-butane isomers at high temperatures. ZSM-5 membrane was prepared on a porous $\alpha$-Al$_2$O$_3$ tube (an average pore diameter, ca. 100 nm) at 18$0^{\circ}C$ by the seed-assisted crystallization method. The XRD and SEM results showed that a thin zeolite layer (ca. 1 ${\mu}{\textrm}{m}$) was formed on the support surface. The single gas permeances of $N_2$, H$_2$, SF$_{6}$, n-butane, and i-butane were taken at 27$0^{\circ}C$. i-Butane permeance hardly changed after repeated thermal treatments up to 40$0^{\circ}C$, indicating the membrane is thermally stable. On the other hand, other single gas permeances increased when the membrane was further dried at 40$0^{\circ}C$, indicating thermal pretreatment at 27$0^{\circ}C$ could not remove all the adsorbed species in the membrane. i-Butane and SF$_{6}$ permeances were significantly lower than the permeances of smaller molecules, indicating that the membrane has a low concentration of defects. The ideal selectivities at 27$0^{\circ}C$ were 61 for $H_2$/i-butane and 47 for $H_2$/SF$_{6}$. The temperature dependency of n/i-butane ideal selectivities and separation factors for an equimolar n/i-butane mixture was studied. The ideal selectivity showed a maximum of 36 at 30$0^{\circ}C$. The separation factors increased with temperature and reached around 12 at 300-40$0^{\circ}C$, which were much higher than those reported in the literature.ature.

  • PDF

Transformation of cis-1,2-Dichlororethylene and its Epoxide by a Butane-Grown Mixed Culture

  • Kim, Young;Lewis Semprini
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.147-152
    • /
    • 2004
  • Aerobic cometabolism of cis-1,2-dichloroethylene (c-DCE) and c-DCE epoxide by a butane-grown mixed culture was evaluated. Transformation of c-DCE resulted in the concomitant generation of c-DCE epoxide. Chloride release studies showed nearly complete oxidative dechlorination of c-DCE (approximately 75%). Mass spectrometry confirmed tile presence of a compound with mass-to-charge-fragment ratios of 112, 83, 48, and 35. The values are in agreement with the spectra of a chemically synthesized c-DCE epoxide. Some evidences indicating the involvement of the monooxygenase in the transformation of c-DCE epoxide are: 1) $O_2$ requirement for c-DCE transformation and butane degradation; 2) butane inhibition on c-DCE transformation and vice versa; 3) the inactivation of c-DCE and c-DCE epoxide transformations by acetylene (a known monooxygenase inactivator); and 4) tire inhibition of c-DCE epoxide transformation by c-DCE.

  • PDF

Low temperature-operating NiO-CoO butane gas sensors

  • Jung, Dong-Ho;Choi, Soon-Don;Min, Bong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • $NiO,\;Cu_2O,\;Mn_2O_3$ and $Cr_2O_3$ as p-type semiconductors were added in CoO with 15 wt.% ethylene glycol binder and measured the butane gas sensing characteristics. The highest sensitivity is obtained for the NiO-CoO sensors. CoO-20 at.% NiO sensor with 15 wt.% ethylene glycol binder sintered at $1100^{\circ}C$ for 24 h exhibits high sensitivity of 90 % to 5000 ppm butane gas at the sensor temperature of $250^{\circ}C$, compared to low sensitivities at the low operating temperature for commercial sensors. Response and recovery times are, respectively, within few seconds and 1min in the static flow system, indicating rapid adsorption and desorption of butane gas on sensor surface even at this low temperature.

Molecular Dynamics Simulation Study on Segmental Motion in Liquid Normal Butane

  • 이송희;김한수
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1068-1072
    • /
    • 1998
  • We present results of molecular dynamic (MD) simulations for the segmental motion of liquid n-butane as the base case for a consistent study for conformational transition from one rotational isomeric state to another in long chains of liquid n-alkanes. The behavior of the hazard plots for n-butane obtained from our MD simulations are compared with that for n-butane of Brownian dynamics study. The MD results for the conformational transition of n-butane by a Poisson process form the total first passage times are different from those from the separate t-g and g-t first passage times. This poor agreement is probably due to the failure of the detailed balance between the fractions of trans and gauche. The enhancement of the transitions t-g and g-t at short time regions are also discussed.

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

A Study on the Characteristics of n-Butane for a Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관에서 n-부탄 연료의 특성에 관한 연구)

  • HAN, SUNG BIN;PARK, JUN YOUNG;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.604-611
    • /
    • 2016
  • This paper describes the characteristics of n-Butane fuel for the homogeneous charge compression ignition (HCCI) engine for a new concept. HCCI engines are being considered as a future alternative for diesel and gasoline engines. From the experimental observations, the effect of n-Butane fuel in HCCI engine on CO, HC and NOx are analysed. The objective of this paper is to clear the effects of equivalence ratio and inlet temperature with n-Butane on the HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine This work has been run with n-butane fuel at a constant speed.

Analysis of Blood Toluene and Butane in Death Cases of Inhalant Abusers (사망사고 관련된 유해화학 물질 남용자들의 혈액 중 톨루엔과 부탄의 분석)

  • Kim, Nam-Yee;Yang, Young-Geun;Chung, Hee-Sun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • The blood toluene concentration was determined by using the GC/MSD with HS-SPME technique in postmortem blood, quantitatively. Butane gases was analyzed by using the GC/FID with HS technique in postmortem blood, qualitatively. Seventy five cases of dead associated with inhalation of glue or butane gases happened in Korea for the last 3 years (1996-1998). In 27 cases of deah due to glue sniffing, nine persons died as a result of a fall while intoxication and their blood tolucne concentration was fairly high in the range of $1.3{\sim}21.6{\mu}g/mL$. In case of death due to butane sniffing, fifty four persons died of acute butane gases inhalation or suffocation, and 6 persons died of butane gases as well as glue inhalation.

  • PDF