Zeolite Membrane for High Temperature Gas Separation

  • Li, G. (Department of Applied Chemistry, Waseda University) ;
  • Kikuchi, E. (Department of Applied Chemistry, Waseda University) ;
  • Matsukata, M. (Department of Applied Chemistry, Waseda University)
  • Published : 2004.05.01

Abstract

The present study reports the preparation of a compact ZSM-5 membrane showing high thermal stability and high separation factors, especially n-/i-butane isomers at high temperatures. ZSM-5 membrane was prepared on a porous $\alpha$-Al$_2$O$_3$ tube (an average pore diameter, ca. 100 nm) at 18$0^{\circ}C$ by the seed-assisted crystallization method. The XRD and SEM results showed that a thin zeolite layer (ca. 1 ${\mu}{\textrm}{m}$) was formed on the support surface. The single gas permeances of $N_2$, H$_2$, SF$_{6}$, n-butane, and i-butane were taken at 27$0^{\circ}C$. i-Butane permeance hardly changed after repeated thermal treatments up to 40$0^{\circ}C$, indicating the membrane is thermally stable. On the other hand, other single gas permeances increased when the membrane was further dried at 40$0^{\circ}C$, indicating thermal pretreatment at 27$0^{\circ}C$ could not remove all the adsorbed species in the membrane. i-Butane and SF$_{6}$ permeances were significantly lower than the permeances of smaller molecules, indicating that the membrane has a low concentration of defects. The ideal selectivities at 27$0^{\circ}C$ were 61 for $H_2$/i-butane and 47 for $H_2$/SF$_{6}$. The temperature dependency of n/i-butane ideal selectivities and separation factors for an equimolar n/i-butane mixture was studied. The ideal selectivity showed a maximum of 36 at 30$0^{\circ}C$. The separation factors increased with temperature and reached around 12 at 300-40$0^{\circ}C$, which were much higher than those reported in the literature.ature.

Keywords