• Title/Summary/Keyword: Burkholderia sp

Search Result 69, Processing Time 0.033 seconds

Phytochemicals and antioxidant capacity of some tropical edible plants

  • Hong, Heeok;Lee, Jun-Hyeong;Kim, Soo-Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1677-1684
    • /
    • 2018
  • Objective: To find biological functions such as antibacterial and antioxidant activities in several tropical plants and to investigate the possibility of antibiotic substitute agents to prevent and treat diseases caused by pathogenic bacteria. Methods: Plants such as Poncirus trifoliata fruit (Makrut), Zingiber officinale Rosc (Khing), Areca catechu L. (Mak), Solanum melongena L. I (Makkhuayao), and Solanum melongena L. II (Makhurapro) were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. The free radical scavenging activities were measured using 2-diphenyl-2-picryl hydrazyl photometric assay. Antibacterial activities with a minimum inhibitory concentration (MIC) were observed by agar diffusion assay against pathogenic strains of Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, Clostridium perfringens, and Pantoea agglomerans. Results: Poncirus trifoliata fruit methanol extract showed antibacterial activities against gram-negative and gram-positive pathogens. Additionally, this showed the strongest antibacterial activity against Burkholderia sp. and Haemopilus somnus with MIC $131{\mu}g/mL$, respectively. Areca catechu L. water extract showed antibacterial activities against Burkholderia sp., Haemopilus somnus, and Haemopilus parasuis. The MIC value for Haemopilus parasuis was $105{\mu}g/mL$ in this. Antioxidant activity of Zingiber officinale Rosc n-hexane extract showed 2.23 mg/mL effective concentration 50% ($EC_{50}$) value was the highest activity among tropical plants extracts. Total polyphenol content in Zingiber officinale Rosc methanol extract was $48.4{\mu}g/mL$ and flavonoid content was $22.1{\mu}g/mL$ showed the highest values among tested plants extracts. Conclusion: Taken together, these results suggest that tropical plants used in this study may have a potential benefit as an alternative antibiotics agent through their antibacterial and antioxidant activities.

Characterization of an Extracellular Lipase in Burkholderia sp. HY-10 Isolated from a Longicorn Beetle

  • Park, Doo-Sang;Oh, Hyun-Woo;Heo, Sun-Yeon;Jeong, Won-Jin;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Yong
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.409-417
    • /
    • 2007
  • Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and $60^{\circ}C$. A broad range of lipase substrates, from $C_4\;to\;C_{18}$ p-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was p-nitrophenyl caproate ($C_6$). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family 1.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, $Ser^{131},\;His^{330},\;and\;Asp^{308}$, which composed the catalytic triad of the enzyme.

Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1 (Brukholderia sp. MP-1 에서의 페놀화합물의 분리와 항균활성의 측정)

  • Mao, Sopheareth;Jin, Rong-De;Lee, Seung-Je;Kim, Yong-Woong;Kim, In-Seon;Shim, Jae-Han;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.195-203
    • /
    • 2006
  • An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.

Toxicity Evaluation of Burkholderia pyrrocinia CAB08106-4 in Cyprinus carpio and Daphnia magna (Burkholderia pyrrocinia CAB08106-4 원제가 잉어 및 물벼룩에 미치는 영향 연구)

  • Cho, Jae-Gu;Kim, Mee-Seon;Choi, Hyun-Jung;Kwon, Min;Kang, Tae-Gu;Chung, Chang-Kook;Kim, Kyun;Oh, Seung-Min;Park, Cheol-Beom
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2014
  • Bukholderia pyrrocinia CAB08106-4 has an anti-fungal effect on Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. It is environmentally friendly microbial product that prevents and controls a variety of phytopathogens including Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. The aim of this study was to assess the environmental toxicity using Cyprinus carpio and Daphnia magna. Bukholderia pyrrocinia CAB08106-4 ($1.0{\times}10^9cfu/mL$) was adminatrated to Cyprinus carpio and Daphnia magna according to the toxicity test guideline for peciticide. $LC_{50}$ of Bukholderia pyrrocinia CAB08106-4 is over $6.67{\times}10^4cfu/mL$ in Cyprinus carpio and Daphnia magna and no adverse effect was observed. Based on these results, we concluded that Bukholderia pyrrocinia CAB08106-4 has no toxiciy for Cyprinus carpio and Daphnia magna.

Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species

  • Nguyen, Thao Thi;Lee, Hyun-Hee;Park, Jungwook;Park, Inmyoung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.148-162
    • /
    • 2017
  • As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, humanpathogenic, and endophytic bacteria.

Isolation of Antagonistic Bacteria against Major Diseases in Panax ginseng C.A. Meyer (인삼 주요병에 대한 길항미생물 선발)

  • Chung, Ki-Chae;Kim, Chang-Bae;Kim, Dong-Ki;Kim, Bok-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.202-205
    • /
    • 2006
  • Ginseng is major medicinal plant in Korea. Because of its long cultivation period the yield losses of 5 years of ginseng is 50% due to various diseases. The objective of this study is to select potential biocontrol agents. As the result of research so far achieved to contribute to rational prevention of ginseag plant disease for the stable cultivation of ginseng, three bacterial strains, Streptomyces lauretii strain B8180, Bacillus subtilis strain 8856, and Burkholderia cepacia strain 7944 were isolated from oak leaf compost. The strains showed antagonistic activities against five ginseng pathogenic fungi (Cylindrocarpon destructans, Rhizoctonia solani, Phytophthora cactorum, Botrytis cinerea, Fusarium solani f. sp. panacis) and control effects on Phytophthora blight.

Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile;Moon, Hee-Sun;Kim, Jae-Young;Kukor, Jerome-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

Molecular Detection of Catabolic Genes for Polycyclic Aromatic Hydrocarbons in the Reed Rhizosphere of Sunchon Bay

  • Kahng Hyung-Yeel;Oh Kye-Heon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.572-576
    • /
    • 2005
  • This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.