Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.11.2016.0252

Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species  

Nguyen, Thao Thi (Department of Microbiology, Pusan National University)
Lee, Hyun-Hee (Department of Microbiology, Pusan National University)
Park, Jungwook (Department of Microbiology, Pusan National University)
Park, Inmyoung (Department of Microbiology, Pusan National University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Publication Information
The Plant Pathology Journal / v.33, no.2, 2017 , pp. 148-162 More about this Journal
Abstract
As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, humanpathogenic, and endophytic bacteria.
Keywords
Burkholderia; endophyte; human pathogen; plant pathogen; secreted protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 He, S. Y., Nomura, K. and Whittam, T. S. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694:181-206.   DOI
2 Holden, M. T., Titball, R. W., Peacock, S. J., Cerdeno-Taraga, A. M., Atkins, T., Crossman, L. C., Pitt, T., Churcher, C., Mungall, K., Bentley, S. D., Sebaihia, M., Thomson, N. R., Bason, N., Beacham, I. R., Brooks, K., Brown, K. A., Brown, N. F., Challis, G. L., Cherevach, I., Chillingworth, T., Cronin, A., Crossett, B., Davis, P., DeShazer, D., Feltwell, T., Fraser, A., Hance, Z., Hauser, H., Holroyd, S., Jagels, K., Keith, K. E., Maddison, M., Moule, S., Price, C., Quail, M. A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Simmonds, M., Songsivilai, S., Stevens, K., Tumapa, S., Vesaratchavest, M., Whitehead, S., Yeats, C., Barrell, B. G., Oyston, P. C. and Parkhill, J. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. U. S. A. 101:14240-14245.   DOI
3 Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H. and Krogh, A. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12: 1652-1662.   DOI
4 Kampenusa, I. and Zikmanis, P. 2010. Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl. Microbiol. Biotechnol. 86:285-293.   DOI
5 Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34:D354-D357.   DOI
6 Kang, Y., Kim, J., Kim, S., Kim, H., Lim, J. Y., Kim, M., Kwak, J., Moon, J. S. and Hwang, I. 2008. Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8:106-121.   DOI
7 Lim, J., Lee, T. H., Nahm, B. H., Choi, Y. D., Kim, M. and Hwang, I. 2009. Complete genome sequence of Burkholderia glumae BGR1. J. Bacteriol. 191:3758-3759.   DOI
8 Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567-580.   DOI
9 Kwak, M. J., Song, J. Y., Kim, S. Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S. K., Lee, C. H., Yu, D. S., Park, S. H. and Kim, J. F. 2012. Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J. Bacteriol. 194:4432-4433.   DOI
10 Lee, J., Park, J., Kim, S., Park, I. and Seo, Y. S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76.   DOI
11 Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905.   DOI
12 Lopez-Fernandez, S., Sonego, P., Moretto, M., Pancher, M., Engelen, K., Pertot, I. and Campisano, A. 2015. Wholegenome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front. Microbiol. 6:419.
13 Lower, M. and Schneider, G. 2009. Prediction of type III secretion signals in genomes of Gram-negative bacteria. PLoS One 4:e5917.   DOI
14 McDermott, J. E., Corrigan, A., Peterson, E., Oehmen, C., Niemann, G., Cambronne, E. D., Sharp, D., Adkins, J. N., Samudrala, R. and Heffron, F. 2011. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria. Infect. Immun. 79:23-32.   DOI
15 Mitter, B., Petric, A., Shin, M. W., Chain, P. S., Hauberg-Lotte, L., Reinhold-Hurek, B., Nowak, J. and Sessitsch, A. 2013. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci. 4: 120.
16 Moller, S., Croning, M. D. and Apweiler, R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646-653.   DOI
17 Naughton, L. M., An, S. Q., Hwang, I., Chou, S. H., He, Y. Q., Tang, J. L., Ryan, R. P. and Dow, J. M. 2016. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18:780-790.   DOI
18 Nielsen, H. and Krogh, A. 1998. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:122-130.
19 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
20 Alfano, J. R. and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414.   DOI
21 Arnold, R., Brandmaier, S., Kleine, F., Tischler, P., Heinz, E., Behrens, S., Niinikoski, A., Mewes, H. W., Horn, M. and Rattei, T. 2009. Sequence-based prediction of type III secreted proteins. PLoS Pathog. 5:e1000376.   DOI
22 Schell, M. A., Ulrich, R. L., Ribot, W. J., Brueggemann, E. E., Hines, H. B., Chen, D., Lipscomb, L., Kim, H. S., Mrázek, J., Nierman, W. C. and Deshazer, D. 2007. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64:1466-1485.   DOI
23 Belcaid, M., Kang, Y., Tuanyok, A. and Hoang, T. T. 2015. Complete genome sequence of Burkholderia cepacia strain LO6. Genome Announc. 3:e00587-15.
24 Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T. and Brunak, S. 2005. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167.   DOI
25 Park, S., Seo, Y. S. and Hegeman, A. D. 2014. Plant metabolomics for plant chemical responses to belowground community change by climate change. J. Plant Biol. 57:137-149.   DOI
26 Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785-786.   DOI
27 Reinhold-Hurek, B. and Hurek, T. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435-443.   DOI
28 Saier, M. H., Jr. 2006. Protein secretion and membrane insertion systems in gram-negative bacteria. J. Membr. Biol. 214:75- 90.   DOI
29 Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco- Mosqueda, M. and Glick, B. R. 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92-99.   DOI
30 Seo, Y. S., Lim, J., Choi, B. S., Kim, H., Goo, E., Lee, B., Lim, J. S., Choi, I. Y., Moon, J. S., Kim, J. and Hwang, I. 2011. Complete genome sequence of Burkholderia gladioli BSR3. J. Bacteriol. 193:3149.   DOI
31 Seo, Y. S., Lim, J. Y., Park, J., Kim, S., Lee, H. H., Cheong, H., Kim, S. M., Moon, J. S. and Hwang, I. 2015. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics 16:349.   DOI
32 Shalom, G., Shaw, J. G. and Thomas, M. S. 2007. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153:2689-2699.   DOI
33 Collmer, A. 1998. Determinants of pathogenicity and avirulence in plant pathogenic bacteria. Curr. Opin. Plant Biol. 1:329- 335.   DOI
34 Buttner, D. and He, S. Y. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:1656-1664.   DOI
35 Chiba, H., Osanai, M., Murata, M., Kojima, T. and Sawada, N. 2008. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta 1778:588-600.   DOI
36 Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14-23.   DOI
37 Costa, T. R., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M. and Waksman, G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13:343-359.   DOI
38 Cunnac, S., Lindeberg, M. and Collmer, A. 2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12:53-60.   DOI
39 Engel, A. and Gaub, H. E. 2008. Structure and mechanics of membrane proteins. Annu. Rev. Biochem. 77:127-148.   DOI
40 Duarte, X., Anderson, C. T., Grimson, M., Barabote, R. D., Strauss, R. E., Gollahon, L. S. and San Francisco, M. J. 2000. Erwinia chrysanthemi strains cause death of human gastrointestinal cells in culture and express an intimin-like protein. FEMS Microbiol. Lett. 190:81-86.   DOI
41 Estrada-de los Santos, P., Vinuesa, P., Martinez-Aguilar, L., Hirsch, A. M. and Caballero-Mellado, J. 2013. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr. Microbiol. 67:51-60.   DOI
42 Block, A. and Alfano, J. R. 2011. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr. Opin. Microbiol. 14:39-46.   DOI
43 Ura, H. Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K. and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72:98-103.   DOI
44 Stevens, T. J. and Arkin, I. T. 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417-420.   DOI
45 Tay, D. M., Govindarajan, K. R., Khan, A. M., Ong, T. Y., Samad, H. M., Soh, W. W., Tong, M., Zhang, F. and Tan, T. W. 2010. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System. BMC Bioinformatics 11 Suppl 7:S4.
46 Tseng, T. T., Tyler, B. M. and Setubal, J. C. 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2.   DOI
47 van Baarlen, P., van Belkum, A., Summerbell, R. C. , Crous, P. W. and Thomma, B. P. 2007. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol. Rev. 31:239- 277.   DOI
48 Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S., Nowak, J. and Sessitsch, A. 2011. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol. 193:3383-3384.   DOI
49 Weisskopf, L., Heller, S. and Eberl, L. 2011. Burkholderia species are major inhabitants of white lupin cluster roots. Appl. Environ. Microbiol. 77:7715-7720.   DOI
50 Wiersinga, W. J., van der Poll, T., White, N. J., Day, N. P. and Peacock, S. J. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 4: 272-282.   DOI
51 Xia, Y., DeBolt, S., Dreyer, J., Scott, D. and Williams, M. A. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci. 6:490.
52 Govan, J. R. and Deretic, V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539-574.
53 Fang, H. and Gough, J. 2013. DcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Res. 41:D536-D544.   DOI
54 Feng, F. and Zhou, J. M. 2012. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15:469-476.   DOI
55 Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S., Kothari, S., Dodson, R. J., Mohamoud, Y., Khouri, H., Roesch, L. F., Krogfelt, K. A., Struve, C., Triplett, E. W. and Methe, B. A. 2008. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4:e1000141.   DOI
56 Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12:329-339.   DOI
57 Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G. and Brunak, S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17: 349-356.   DOI
58 Xu, X. H., Su, Z. Z., Wang, C., Kubicek, C. P., Feng, X. X., Mao, L. J., Wang, J. Y., Chen, C., Lin, F. C. and Zhang, C. L. 2014. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Sci. Rep. 4:5783.