Browse > Article

Characterization of an Extracellular Lipase in Burkholderia sp. HY-10 Isolated from a Longicorn Beetle  

Park, Doo-Sang (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hyun-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Heo, Sun-Yeon (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Jeong, Won-Jin (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Shin, Dong-Ha (Insect Biotech Co. Ltd.)
Bae, Kyung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Ho-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology / v.45, no.5, 2007 , pp. 409-417 More about this Journal
Abstract
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and $60^{\circ}C$. A broad range of lipase substrates, from $C_4\;to\;C_{18}$ p-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was p-nitrophenyl caproate ($C_6$). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family 1.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, $Ser^{131},\;His^{330},\;and\;Asp^{308}$, which composed the catalytic triad of the enzyme.
Keywords
Burkholderia sp. HY-10; lipase; Prionus insularis; insect gut microorganism;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 14
연도 인용수 순위
1 Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763-781   DOI
2 Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Panibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759   과학기술학회마을
3 Jaeger, K.E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390-397   DOI   ScienceOn
4 Jaeger, K.E., S. Ransac, B.W. Dijkstra, C. Colson, M. Van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63   DOI
5 Kwak, J., K. Lee, D.H. Shin, J.S. Maeng, D.S. Park, H.W. Oh, K.S. Bae, and H.Y. Park. 2007. Biochemical and genetic characterization of an extracellular metalloprotease produced from Serratia proteamaculans. J. Microbiol. Biotechnol. 17, 761-768   과학기술학회마을
6 Noble, M.E., A. Cleasby, L.N. Johnson, M.R. Egmond, and L.G. Frenken. 1993. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331, 123-128   DOI   ScienceOn
7 Pandey, A., S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger, and V.T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119-131   PUBMED
8 Reimmann, C., M. Beyeler, A. Latifi, H. Winteler, M. Foglino, A. Lazdunski, and D. Haas. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol. 24, 309-319   DOI   ScienceOn
9 Rosenau, F. and K. Jaeger. 2000. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023-1032   DOI   ScienceOn
10 Weissfloch, A. and A. Kazalauskas. 1995. Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols. J. Org. Chem. 60, 1258-1262
11 Frenken, L.G., M.R. Egmond, A.M. Batenburg, J.W. Bos, C. Visser, and C.T. Verrips. 1992. Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Appl. Environ. Microbiol. 58, 3787-3791   PUBMED
12 Cristobal, S., J.W. De Gier, H. Nielsen, and G. Von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Embo J. 18, 2982-2990   DOI   ScienceOn
13 Whitehead, N.A., A.M. Barnard, H. Slater, N.J. Simpson, and G.P. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365-404   DOI
14 Rathi, P., P.K. Saxena, and R. Gupta. 2001. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37, 187-192   DOI   ScienceOn
15 Reik, R., T. Spilker, and J.J. Lipuma. 2005. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol. 43, 2926-2928   DOI   ScienceOn
16 Dunphy, G., C. Miyamoto, and E. Meighen. 1997. A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). J. Bacteriol. 179, 5288-5291   DOI   PUBMED
17 Kim, K.K., H.K. Song, D.H. Shin, K.Y. Hwang, and S.W. Suh. 1997. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5, 173-185   DOI   ScienceOn
18 Tran Van, V., O. Berge, S. Ngo Ke, J. Balanderau, and T. Heulin. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield component in low fertility sulphate acid soils of Vietnam. Plant Soil 218, 273-284   DOI
19 Fries, M.R., L.J. Forney, and J.M. Tiedje. 1997. Phenol- and toluenedegrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63, 1523-1530   PUBMED
20 Kinya, K., S. Kozaki, and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20, 459-462   DOI   ScienceOn
21 Fiore, A., S. Laevens, A. Bevivino, C. Dalmastri, S. Tabacchioni, P. Vandamme, and L. Chiarini. 2001. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ. Microbiol. 3, 137-143   DOI   ScienceOn
22 Reetz, M.T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6, 145-150   DOI   ScienceOn
23 Vermis, K., M. Brachkova, P. Vandamme, and H. Nelis. 2003. Isolation of Burkholderia cepacia complex genomovars from waters. Syst. Appl. Microbiol. 26, 595-600   DOI   ScienceOn
24 Lewenza, S., B. Conway, E.P. Greenberg, and P.A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181, 748-756   PUBMED
25 Fuqua, C. and E.P. Greenberg. 2002. Listening in on bacteria: acylhomoserine lactone signalling. Nat. Rev. Mol. Cell. Biol. 3, 685-695   DOI   ScienceOn
26 Ollis, D.L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S.M. Franken, M. Harel, S.J. Remington, I. Silman, and J. Schrag. 1992. The alpha/beta hydrolase fold. Protein Eng. 5, 197-211   DOI
27 Kim, H.K. 2003. Molecular structures and catalytic mechanism of bacterial lipases. Kor. J. Microbiol. Biotechnol. 31, 311-321
28 Park, D.S., H.W. Oh, H. Kim, S.Y. Heo, N. Kim, K.Y. Seol, and H.Y. Park. 2007. Screening of bacteria producing lipase from insect gut: isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase. Kor. J. Appl. Entomol. 46, 131-139   과학기술학회마을   DOI
29 Von Heijne, G. 1986. Net N-C charge imbalance may be important for signal sequence function in bacteria. J. Mol. Biol. 192, 287-290   DOI
30 Federal-Register. 2003. Burhkolderia cepacia complex; significant new use rule. Section 5(a) (2) of the Toxic Substances Control Act (TSCA). 68, 35315-35320
31 Jorgensen, S., K.W. Skov, and B. Diderichsen. 1991. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J. Bacteriol. 173, 559-567   DOI   PUBMED
32 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   ScienceOn
33 Lee, E.Y. 2003. Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system. J. Biosci. Bioeng. 96, 572-574   DOI   ScienceOn
34 Sandkvist, M. 2001. Biology of type II secretion. Mol. Microbiol. 40, 271-283   DOI   ScienceOn
35 Frenken, L.G., J.W. Bos, C. Visser, W. Muller, J. Tommassen, and C.T. Verrips. 1993. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol. Microbiol. 9, 579-589   DOI   ScienceOn
36 Ryu, H.S., H.K. Kim, W.C. Choi, M.H. Kim, S.Y. Park, N.S. Han, T.K. Oh, and J.K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70, 321-326   DOI
37 Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae, and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40, 269-274   과학기술학회마을
38 Sugihara, A., M. Ueshima, Y. Shimada, S. Tsunasawa, and Y. Tominaga. 1992. Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem. (Tokyo) 112, 598-603   DOI   PUBMED
39 Chiarini, L., A. Bevivino, C. Dalmastri, S. Tabacchioni, and P. Visca. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 14, 277-286   DOI   ScienceOn
40 Gupta, N., P. Rathi, R. Singh, V.K. Goswami, and R. Gupta. 2005. Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix. Appl. Microbiol. Biotechnol. 67, 648-653   DOI
41 Rathi, P., S. Bradoo, P.K. Saxena, and R. Gupta. 2000. A hyperthermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22, 495-498   DOI   ScienceOn
42 Bevivino, A., C. Dalmastri, S. Tabacchioni, and L. Chiarini. 2000. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils 31, 225-231   DOI
43 Miller, S.C., J.J. LiPuma, and J.L. Parke. 2002. Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl. Environ. Microbiol. 68, 3750-3758   DOI
44 Whiteley, M. and E.P. Greenberg. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183, 5529-5534   DOI   ScienceOn
45 Rosenau, F., J. Tommassen, and K.E. Jaeger. 2004. Lipase-specific foldases. Chembiochem 5, 152-161   DOI   ScienceOn
46 Speert, D.P. 2001. Understanding Burkholderia cepacia: epidemiology, genomovars, and viruence. Infect. Med. 18, 49-56
47 Sullivan, E.R., J.G. Leahy, and R.R. Colwell. 1999. Cloning and sequence analysis of the lipase and lipase chaperone-encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a proteobacterial lipase family and an analogous lipase chaperone family. Gene 230, 277-286   DOI   ScienceOn
48 Carvalho, A.P., G.M. Ventura, C.B. Pereira, R.S. Leao, T.W. Folescu, L. Higa, L.M. Teixeira, M.C. Plotkowski, V.L. Merquior, R.M. Albano, and E.A. Marques. 2007. Burkholderia cenocepacia, B. multivorans, B. ambifaria and B. vietnamiensis isolates from cystic fibrosis patients have different profiles of exoenzyme production. Apmis 115, 311-318   DOI   ScienceOn
49 Jaeger, K.E., B.W. Dijkstra, and M.T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351   DOI   ScienceOn