• 제목/요약/키워드: Bulk fill

검색결과 83건 처리시간 0.026초

LTCC 소재의 조성과 성형 공정에 따른 소결체의 강도 특성 (The Strength of Sintered Body with the Composition and the Forming Process of LTCC Materials)

  • 구신일;신효순;여동훈;남산
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-32
    • /
    • 2013
  • According to the composition of LTCC material, though it was thought that bulk defect which was made in forming process effects on the densification during the sintering, it was not reported systemically. In this study, we evaluated crystal structure, 3 point bending strength, hardness and microstructure of the samples by uniaxial pressing and tape casting using the commercial powders of the crystallizing glass and the glass/ceramic composite. In the case of glass/ceramic composite, Viox-001 powder with residual glass in the sintering, 3 point bending strength was similar regardless of forming process due to fill the bulk defect by residual glass. In the case of crystallizing glass, MLS-22, because glass phase was small in the sintering, glass did not fill the pore in the sample by uniaxial pressing process, therefore, the 3 point bending strength of it was 167 MPa. However, the 3 point bending strength of the sample by tape casting was 352 MPa and much higher. Meanwhile, crystal structure and hardness were similar regardless of forming process.

비정질실리콘 pin태양전지에서 입사광 세기에 따른 전류 저압특성 (Incident Light Intensity Dependences of Current Voltage Characteristics for Amorphous Silicon pin Solar Cells)

  • 장진;박민
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.236-242
    • /
    • 1986
  • The dependence of the current-voltage characteristics of hydrogenated amorphous silicon pin solar cells on the illumimination light intensity has been investigated. The open circuit voltage increases linearly with increasing the logarithm of light intensity up to AM 1, and nearly saturates above AM 1, indicating the open circuit voltage approaching the built-in potential of the pin solar cell above AM 1. The short circuit current density increase with light intensity in proportion to I**0.85 before and I**0.97 after light exposure. Since the series resistance devreses and shunt resistance increases with light intensily, the fill factor increases with light illumination. To increase the fill factor at high illumination in large area solar cells, t6he grid pattern on the ITO substrates should be made. Long light exposure on the solar cells gives rise to the increase of bulk resistance and defect states, resulting in the decrease of the fil factor and short circuit current density. The potential drop in the bulk of the a-Si:H pin solar cells at short circuit condition increases with decreasing temperature, and increases after long light exposure.

  • PDF

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • 이선화;이준신;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

열확산 프로세스에 의한 초전도 벌크 합성 (Fabrication of the Bulk Superconductor by Thermal Diffusion Process)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.461-465
    • /
    • 2021
  • A diffusion heat treatment process for YBa2Cu3O7-y bulk superconductor in a Gd2O3 powder was attempted. As a result of measuring the critical temperature of the superconducting bulk, there was no change in the superconducting transition temperature as the Gd particles diffused into the YBa2Cu3O7-y lattice, resulting in dense microstructure. As a result of measuring the critical current, the critical current density (Jc) of the superconducting bulk having treated by the Gd thermal diffusion treatment at 0 T increased to 3×104 A/cm2 at 0 T, which was higher than that of the superconducting bulk without thermal diffusion treatment. The surface magnetic force of the superconducting bulk with Gd thermal diffusion treatment was observed at the center of the superconducting bulk with the maximum trapped magnetic force (Hmax) of 1.51 kG. This result means that the Gd thermal diffusion treatment contributes to improving the critical current density Jc of YBa2Cu3O7-y, and it is believed that Gd particles migrating into the superconducting bulk through thermal diffusion either fill the surface pores of YBa2Cu3O7-y superconductors or act as a flux pinning center.

자동차용 콘솔 게이트 위치 선정을 위한 3차원 사출성형 시뮬레이션 활용 (The Application of 3D Injection Molding Simulation in Gate Location Selection for Automotive Console)

  • 최영근
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.51-58
    • /
    • 2014
  • Injection molding simulation provided optimized design results by analyzing quality problems while the product is in assembly or in the process of manufacturing with make automobile plastics. Frequent change of design, change of injection molding, repetition of test injection which was held in the old way can now be stopped. And quality upgrade is expected instead. This report deals with the effect which the position of injection molding automobile console gate and number has on product quality including pressure at end of fill, bulk temperature at end of fill, shear stress of end of fill, residual stress at post filling end, product weld lines and warpage results. Simpoe-Mold simulates the complete manufacturing process of plastic injected parts, from filling to warpage. Simpoe-Mold users, whether they are product designers, mold makers or part manufacturers, can identify early into the design stage potential manufacturing problems, study alternative solutions and directly assess the impact of such part modification, whatever the complexity and geometry of such parts, shell part as plain solid parts.

와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향 (Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells)

  • 김일환;박준성;박재근
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

Validation of aseptic processes for pharmaceuticals

  • Joseph, Lincy;George, Mathew;Jain, Saurabh Kumar
    • Advances in Traditional Medicine
    • /
    • 제10권4호
    • /
    • pp.231-238
    • /
    • 2010
  • Sterile Products may be broadly classified into two main categories, according to the manner in which they are produced: those which are sterilized after the product has been filled and sealed in the final container(s) ("terminally sterilized" products) and those where the sterilization stage (or stages) takes place is it before or after the bulk product filled in to final container. In this latter instance, all subsequent processing (typically, the filling and sealing operations) must be conducted aseptically in order to prevent recontamination of the sterilized product. The two most common pharmaceutical applications of aseptic processing methods are (a) the filling of liquid products following sterilization by filtration and (b) the filling of previously sterilized bulk powder products. An aseptic processing operation should be tested using a microbiological growth medium (media fill) during lyophilized injection formulation, filling, loading, lyophilisation, stoppering, and unloading activities.

Organic photovoltaic cells using low sheet resistance of ITO for large-area applications

  • 김도근;강재욱;김종국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.5.1-5.1
    • /
    • 2009
  • Organic photovoltaic (OPV)cells have attracted considerable attention due to their potential for flexible, lightweight, and low-cost application of solar energy conversion. Since a 1% power conversion efficiency (PCE) OPV based on a single donor-acceptor heterojunction was reported by Tang, the PCE has steadily improved around 5%. It is well known that a high parallel (shunt)resistance and a low series resistance are required simultaneously to achieve ideal photovoltaic devices. The device should be free of leakage current through the device to maximize the parallel resistance. The series resistance is attributed to the ohmic loss in the whole device, which includes the bulk resistance and the contact resistance. The bulk resistance originated from the bulk resistance of the organic layer and the electrodes; the contact resistance comes from the interface between the electrodes and the active layer. Furthermore, it has been reported that the bulk resistance of the indium tin oxide (ITO) of the devices dominates the series resistance of OPVs for a large area more than $0.01\;cm^2$. Therefore, in practical application, the large area of ITO may significantly reduce the device performance. In this work, we investigated the effect of sheet resistance ($R_{sh}$) of deposited ITO on the performance of OPVs. It was found that the device performance of polythiophene-fullerene (P3HT:PCBM) bulk heterojunction OPVs was critically dependent on Rsh of the ITO electrode. With decreasing $R_{sh}$ of the ITO from 39 to $8.5\;{\Omega}/{\square}$, the fill factor (FF) of OPVs was dramatically improved from 0.407 to 0.580, resulting in improvement of PCE from $1.63{\pm}0.2$ to $2.5{\pm}0.1%$ underan AM1.5 simulated solar intensity of $100\;mW/cm^2$.

  • PDF

P3HT:PCBM의 고분자 유기박막태양전지의 특성연구 (Properties of bulk-hetro junction polymer solar cells with P3HT:PCBM active layer)

  • 장성규;최재영;김근호;공수철;장호정
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 1부
    • /
    • pp.488-490
    • /
    • 2010
  • 최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정 에너지 개발에 대한 중요성이 증대되고 있다. 그중에서 태양정지는 공해가 적고, 자원이 무한적이며 반 영구적인 수명을 가지고 있어 미래에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다. 본 연구에서는 P3HT(regioregular poly(3-hexylthiophene))와 PCBM(fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester)을 전자 도너와 억셉터 물질을 하나의 브랜드로 광 활성층을 형성하는 BHJ(bulk hetero junction)구조를 갖는 고분자 유기 박막 태양전지를 각각 Toluene, Mono-Chlorobenzene, Dichlorobenzene에 $60^{\circ}C$, 200rpm으로 약 12시간동안 1wt%로 교반(Stirring)한 후에 중량비(1:1 wt%)로 혼합하여 스핀코팅(Spin-coating)으로 제작하였고, 완성된 소자의 광활성층 면적은 0.04cm2이며, $150^{\circ}C$에서 후속 열처리 공정을 통해 특성 향상이 측정 되었다. 태양전지 소자 구조는 Glass / ITO / PEDOT:PSS / P3HT : PCBM / Al이다. 전류-전압, FF(Fill Factor), 변환효율 측정을 위해 solar simulator를 AM1.5 조건(100 mW/cm2)으로 이용하였으며, 소자의 최대 전류밀도는 12mA/$cm^2$, 개방전압은 0.566V이고 F.F(Fill Factor)는 55.2%이고 변환효율은 3.7%이다. 후속 열처리후 더욱 좋은 성능을 갖게 되었고, 최대 효율은 Dichl orobenzene일 때 이다.

  • PDF