• 제목/요약/키워드: Building Construction cost

Search Result 1,609, Processing Time 0.027 seconds

A Study of the Establishment of BIM Design Environment based on Virtual Desktop Infrastructure(VDI) of Cloud Computing Technology (클라우드 컴퓨팅 기술을 활용한 데스크탑 가상화 기반의 BIM 설계 환경 구축에 관한 연구)

  • Shin, Joonghwan;Lee, Kyuhyup;Kwon, Soonwook;Choi, Gyuseong;Ko, Hyunglyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.118-128
    • /
    • 2015
  • Recently BIM technology has been expanded for using in construction project. Due to the high-cost of BIM infrastructure development, lack of regulations, lack of process and so forth, usage of BIM has been delayed than initial expectations. In design phase, especially, collaboration based on BIM system has been a key factor for successful next generation building project. Through the analysis of current research trends about IT technologies, virtualization and BIM service, data exchange such as drawings, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. The purpose of this study is to enable the cloud computing BIM server to provide several main functions such as editing models, 3D model viewing and checking, mark-up and snapshot in high-performance quality by proper design of VDI system. Concurrent client connection performance is a main technical index of VDI. Through testing of test-bed server client, developed VDI system's multi-connect control is evaluated. Performance-test result of BIM server VDI effect to development direction of cloud computing BIM service for commercialization.

Development of Pre-workshop Phase for the VE application at the Early Planning Stage of the Mega Project (메가프로젝트 기획/계획단계 VE적용을 위한 준비단계 수행방안)

  • Ha, Seung-Ryong;Hyun, Chang-Taek;Son, Myung-Jin;Kim, Yun-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.4
    • /
    • pp.29-39
    • /
    • 2011
  • In Korea, many mixed-used development projects(MXD) in mega project size are currently active. As these mega projects require long-term construction and execution and involve by different subjects in different fields, their completion breeds various problems, such as conflicts among project participants due to their complicated interest relationships and inaccuracy in predicting the economic performance of the projects due to inappropriate facility capacity planning. To solve these problems, it is essential to apply value engineering (VE) at the planning phase of the project, which can result in the best possible cost reduction and improvement of project performance. However, not many projects are actually implementing VE because of the lack of available information, as well as the limitations due to uncertainty in the early period of project execution. Therefore, this study aimed at proposing VE Team Building, Quality Model Performance Indexes, Space Model so as to resolve common mega project problems and overcome VE application limitations at planning stage. The result of this study is expected that the data can be utilized as basic data to apply VE at the planning phase of the large complex projects.

Eco-Friendly Design Evaluation Model Using PEI for Construction Facilities (PEI를 활용한 건설시설물의 친환경 설계평가모델)

  • Kim, Joon-Soo;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.729-738
    • /
    • 2017
  • With the signing of the Paris Agreement, which is the new climate change agreement at the end of 2015, it will have a great impact on Korea environmental policy. The construction industry, which accounts for 42% of Korea's total $CO_2$ emissions, has been implementing various policies to improve the environmental problems. However, it is only applying passively to other projects except eco-friendly building certification. This is because most of the eco-related systems are based on building facilities. Therefore, there is a need for a new eco - friendly design evaluation model that can be widely applied not only to architecture but also to civil engineering facilities. In this study, a new model is developed based on the existing VE model, which adds new factors to evaluate the environmental friendliness, potential environmental pollution concept and environmental risk of facilities. This model is an eco-friendly design evaluation model that enables decision makers to effectively select alternative environmental criteria at the design stage. As a result of the case analysis of the block retaining wall and the alternative retaining wall, the value of the eco - friendly value of the alternative was 1.026 times higher than the original one. If this model is used at the design stage, it is expected to contribute not only to the construction of environmentally friendly facilities but also to the reduction of carbon emissions.

Simulation-Based Stochastic Markup Estimation System $(S^2ME)$ (시뮬레이션을 기반(基盤)으로 하는 영업이윤율(營業利潤率) 추정(推定) 시스템)

  • Yi, Chang-Yong;Kim, Ryul-Hee;Lim, Tae-Kyung;Kim, Wha-Jung;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.109-113
    • /
    • 2007
  • This paper introduces a system, Simulation based Stochastic Markup Estimation System (S2ME), for estimating optimum markup for a project. The system was designed and implemented to better represent the real world system involved in construction bidding. The findings obtained from the analysis of existing assumptions used in the previous quantitative markup estimation methods were incorporated to improve the accuracy and predictability of the S2ME. The existing methods has four categories of assumption as follows; (1) The number of competitors and who is the competitors are known, (2) A typical competitor, who is fictitious, is assumed for easy computation, (3) the ratio of bid price against cost estimate (B/C) is assumed to follow normal distribution, (4) The deterministic output obtained from the probabilistic equation of existing models is assumed to be acceptable. However, these assumptions compromise the accuracy of prediction. In practice, the bidding patterns of the bidders are randomized in competitive bidding. To complement the lack of accuracy contributed by these assumptions, bidding project was randomly selected from the pool of bidding database in the simulation experiment. The probability to win the bid in the competitive bidding was computed using the profile of the competitors appeared in the selected bidding project record. The expected profit and probability to win the bid was calculated by selecting a bidding record randomly in an iteration of the simulation experiment under the assumption that the bidding pattern retained in historical bidding DB manifest revival. The existing computation, which is handled by means of deterministic procedure, were converted into stochastic model using simulation modeling and analysis technique as follows; (1) estimating the probability distribution functions of competitors' B/C which were obtained from historical bidding DB, (2) analyzing the sensitivity against the increment of markup using normal distribution and actual probability distribution estimated by distribution fitting, (3) estimating the maximum expected profit and optimum markup range. In the case study, the best fitted probability distribution function was estimated using the historical bidding DB retaining the competitors' bidding behavior so that the reliability was improved by estimating the output obtained from simulation experiment.

  • PDF

A Study on 3D Model Building of Drones-Based Urban Digital Twin (드론기반 도심지 디지털트윈 3차원 모형 구축에 관한 연구)

  • Lim, Seong-Ha;Choi, Kyu-Myeong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.163-180
    • /
    • 2020
  • In this study, to build a spatial information infrastructure, which is a component of a smart city, a 3D digital twin model in the downtown area was built based on the latest spatial information acquisition technology, the drone. Several analysis models were implemented by utilizing. While the data processing time and quality of the three types of drone photogrammetry software are different, the accuracy of the construction model is ± 0.04 in the N direction and ± 0.03m in the E direction. In the m and Z directions, ± 0.02m was found to be less than 0.1m, which is defined as the allowable range of surveying performance and inspection performance for the boundary point in the area where the registration of the boundary point registration is executed. 1: 500 to 1 of the aerial survey work regulation: The standard deviation, which is the error limit of the photographic reference point of the 600 scale, appeared within 0.14 cm, and it was found that the error limit of the large scale specified in the cadastral and aerial survey was satisfied. In addition, in order to increase the usability of smart city realization using a drone-based 3D urban digital twin model, the model built in this study was used to implement Prospect right analysis, landscape analysis, Right of light analysis, patrol route analysis, and fire suppression simulation training. Compared to the existing aerial photographic survey method, it was judged that the accuracy of the naked eye reading point is more accurate (about 10cm) than the existing aerial photographic survey, and it is possible to reduce the construction cost compared to the existing aerial photographic survey at a construction area of about 30㎢ or less.

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Experimental Study on Loading Capacity of SY Corrugated Steel Form for RC Beam and Girder (SY 비탈형 보거푸집의 내하성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Hwhang, Yoon-Koog;Shin, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.32-39
    • /
    • 2021
  • Recently, necessities of steel form for reinforced concrete beam and girder have been emphasized in building structures for the reduction of the construction period and the labor cost. SY Beam was developed for the these purposes and is roll-formed using thin steel plate. On this research, we tried to evaluate and verify the performance and behavior of SY Beam under construction loading stage as like pouring in situ concrete. For the standard shape of SY beam, structural modelling with various steel thicknesses has carried out using MIDAS GEN program. From results of modelling, the width and height of SY Beam were determined 600mm and 400mm respectively. For 3 SY Beams, the loading experiment was performed to measure vertical and horizontal displacement under stacking sand, concrete block, and bundle of rebar. As a result, the vertical deflection showed a tendency to decrease as the thickness increased. In the horizontal displacement, the trend according to the thickness was not clearly observed. From the evaluation on the loading experiment, it is considered that the SY Beam can secure both workability and structural safety. In particular, the SY Beam(1.2mm) hardly generates horizontal displacement, so it has excellent load-bearing capacity. So, we judged that the SY Beam with 1.2mm steel plate has excellent performance and consider to be immediately commercially available.

Financial Analysis Model Development by Applying Optimization Method in Residential Officetel (최적화 기법을 활용한 주거용 오피스텔 수지분석 모델 개발)

  • Jang, Jun-Ho;Ha, Sun-Geun;Son, Ki-Young;Son, Seung-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • The domestic construction industry is changing according to its preference for demand and supply along with urbanization and economic development. Accordingly, initial risk assessments is more important than before. In particular, demand for lease-based investment products such as commercial and office buildings has surged as a substitute for financial products due to low interest rates of banks. Therefore, the objective is to suggest a basic study on financial analysis model development by applying optimization method in residential officetel. To achieve the objective, first, the previous studies are investigated. Second, the causal loop diagram is structured based on the collected data. Third, the system dynamics method is used to develop cost-income simulation and optimization model sequentially. Finally, the developed model was verifed through analyzing a case project. In the future, the proposed model can be helpful whether or not conduct execution of an officetel development project to the decision makers.

A Study on the Evaluation of Competitiveness and Economic Feasibility of Ship Repair Industry in Korea (우리나라 수리조선의 경쟁력 및 경제성 평가에 관한 연구)

  • Kim, Dug-Sup;Shin, Sang-Hoon;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.3
    • /
    • pp.69-86
    • /
    • 2022
  • This study analyses the necessity of the large-size shipyard and explores competitiveness factors of it. Furthermore, the competitiveness is evaluated and the economic feasibility of building and operation of shipyard is examined. As a result of AHP analysis of the determining factors of the competitiveness of the repairing shipyard, the importance of the factors was found in the order of arrival and departure safety, repair technology, dock and wharf facilities, repair cost, repair period (on time delivery), and repair parts supply. Moving distance, repair service quality, repair parts supply, arrival and departure safety, repair technology, dock and quay wall facilities, and repair period (on time delivery) were identified as key factors in the AHP analysis for competitiveness of the Busan Port repair shipyard to be built in the future. As a result of the analysing economic feasibility, the net present value of the Busan Port repair shipyard construction and operation investment project was KRW 435.6 billion, and the internal rate of return was 9.8%, higher than the social discount rate (4.5%), and the cost-benefit ratio (B/C) was high at 1.167. As a result of the study, the necessity and economic feasibility of the Busan Port repair shipyard are sufficiently ensured, and the competitiveness assessment was highly positive.

A Study on a Rhabilitation Design, Decision Making and Housing Management Policies for Reuse of Deteriorated Apartments in Korea (노후아파트 재활용을 위한 건축디자인 의사결정 및 관리정책 연구)

  • Shon, Seung-Kwang;Cho, Hyung-Geun;Cho, Sun-Chul;Choi, Il
    • Journal of the Korean housing association
    • /
    • v.13 no.5
    • /
    • pp.77-88
    • /
    • 2002
  • This article deals the investigations how to solve the social deficiencies of deteriorate apartments, which is a half cycle of a building and it goes slum clearance and redevelopment. And this proposes an active remodeling and design strategy, management, and housing policies for extending the usage of the resource. Most of apartment housing in Korea is built by the panel wall and slab structure system fur economic price. To remake is possible, even though not designed in flexibility and variation. The remodeling strategies are dwelling unification, transformation of two units to one or three units, addition of a room, changing into commercial and community required spaces, and reshaping of a envelop and facade by addition of a dwelling or dwellings, roof floors, change of materials and colors, and so on. And, all activities in structural aspect are proposed removal in upper part and addition in lower part of an apartment housing. Active remodeling cost a great deal compare to new construction, so any remodeling activities should be based on a minimal interfere and budgets to enhancing the quality in existing building. The final aim of an active remodeling is to enhance the quality in economic values, and to keep original state and to put on the new one in a small part. To promote the active and careful management and rehabilitation, it is necessary to give the positive incentive in terms of architectural law, bank loan, and any redevelopment project should get the remodeling record in national resources.