A Study on 3D Model Building of Drones-Based Urban Digital Twin

드론기반 도심지 디지털트윈 3차원 모형 구축에 관한 연구

  • Lim, Seong-Ha (Korea Land and Geospatial Informatix Corporation) ;
  • Choi, Kyu-Myeong (Korea Land and Geospatial Informatix Corporation) ;
  • Cho, Gi-Sung (Department of Civil Engineering, Jeonbuk National University)
  • 임성하 (한국국토정보공사 전북지역본부 공간정보사업처) ;
  • 최규명 (한국국토정보공사 전북지역본부) ;
  • 조기성 (전북대학교 토목공학과)
  • Received : 2020.04.29
  • Accepted : 2020.06.12
  • Published : 2020.06.30


In this study, to build a spatial information infrastructure, which is a component of a smart city, a 3D digital twin model in the downtown area was built based on the latest spatial information acquisition technology, the drone. Several analysis models were implemented by utilizing. While the data processing time and quality of the three types of drone photogrammetry software are different, the accuracy of the construction model is ± 0.04 in the N direction and ± 0.03m in the E direction. In the m and Z directions, ± 0.02m was found to be less than 0.1m, which is defined as the allowable range of surveying performance and inspection performance for the boundary point in the area where the registration of the boundary point registration is executed. 1: 500 to 1 of the aerial survey work regulation: The standard deviation, which is the error limit of the photographic reference point of the 600 scale, appeared within 0.14 cm, and it was found that the error limit of the large scale specified in the cadastral and aerial survey was satisfied. In addition, in order to increase the usability of smart city realization using a drone-based 3D urban digital twin model, the model built in this study was used to implement Prospect right analysis, landscape analysis, Right of light analysis, patrol route analysis, and fire suppression simulation training. Compared to the existing aerial photographic survey method, it was judged that the accuracy of the naked eye reading point is more accurate (about 10cm) than the existing aerial photographic survey, and it is possible to reduce the construction cost compared to the existing aerial photographic survey at a construction area of about 30㎢ or less.

본 연구에서는 스마트시티 구성요소인 공간정보인프라 구축을 위해 최신 공간정보 취득 기술인 드론을 기반으로 도심지의 3차원 디지털트윈 모형을 구축하였으며, 구축된 모형 간의 처리시간·품질·정확도 분석과 스마트시티 응용시스템을 활용하여 몇 가지 분석 모델을 구현하였다. 3종의 드론 사진측량 소프트웨어의 데이터 처리시간·품질이 각각 다르게 나타난 반면 구축 모델의 정확도는 8점의 검사점에 대한 평균제곱근 오차(RMSE)는 N방향으로 ±0.04m, E방향으로는 ±0.03m, Z방향으로 ±0.02m로 경계점좌표등록부시행지역의 경계점에 대한 측량성과와 검사성과의 허용범위로 규정하고 있는 0.1m 미만으로 나타났으며. 항공사진측량 작업규정의 1:500~1:600 축척의 사진기준점 오차 한계인 표준편차 0.14cm 이내로 나타나서 지적과 항공사진측량에서 규정하는 대축척의 오차 한계 모두 만족함을 알 수 있었다. 또한 드론기반의 3차원 도심지 디지털트윈 모형을 이용한 스마트시티 구현의 활용성 증대를 위해 본 연구에서 구축한 모형을 이용하여 조망권·경관분석, 일조권분석, 순찰경로분석, 화재진압 모의 훈련 등을 구현하였으며, 기존 항공측량 방법과 비교해서 육안 판독지점에 대한 정확도는 기존 항공측량 보다 10cm 내외 더 정확하고, 약 30㎢ 이하의 구축 면적에서 기존항공측량 보다 구축비용을 절감할 수 있을 것이라 판단할 수 있었다.



  1. No HS. 2018. Real-time underground facility map production using drone. Thesis for Master degree. Graduate Department of Spatial Information Engineering. Dong-Eui University.
  2. YOU SJ. 2018. Aerial photographing and 3D modeling of transparent buildings using drones. Thesis for Master degree. Graduate Department of Spatial Information University of Seoul.
  3. LEE BG. 2018. A Study of Three Dimensional DSM Development using Self-Developed Drone. The Korean Earth Science Society. 39(1):46-52.
  4. LEE SJ. 2016. Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle(Drone). The Korean Society for Rock Mechanics and Rock Engineering. 26(1):24-31.
  5. LEE JW. 2015. Research on preparation of work rules and assembly of drone for the creation of spatial information infrastructure. Korea Land and Geospatial Informatix Corporation.
  6. SONG JW.2011. Generation of the Building Layer of Large-scale Digital Map Using Multi-Oblique Image. Thesis for Master degree. Graduate Department of Geoinformatics. Kyonggi University.
  7. CHOI MS. 2018. A Study on the Effects of Development of Digital Mappng in the Island Areas Using the Drone Photogrammetry Method. Thesis for Master degree. Graduate Department of Urban Planning. In-ha University.
  8. DG Lowe. 1999. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision. ISBN: 0-7695-0164-8.
  9. Frost & sullivan. 2019. Smart Cities Frost&Sullivan Value Proposition. p. 2.
  10. M. Jarzabek-Rychard. 2016. Quality Analysis On 3D Building Models Reconstructed From UAV Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, Volume XLI-B1.
  11. Noah Snavely. Steven M. Seitz. Richard Szeliski. 2006. Photo tourism: exploring photo collection in 3d. University of Washington.
  12. Norzailawati Mohd Noor. 2019. 3D City Modeling Using Multirotor Drone For City Heritage Conservation. Journal of the Malaysian Institude of Planners. 17(1):338-349.
  13. Shreyansh Daftry. Christof Hoppe. and Horst Bischof. 2015. Building with Drones: Accurate 3D Facade Reconstruction using MAVs. IEEE International Conference on Robotics and Automation (ICRA). ISSN: 1050-4729.
  14. Siyuan Chen. 2019. UAV Bridge Inspection Through Evaluated 3D Reconstructions. Journal of Bridge Engineering. 24(4).

Cited by

  1. 무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가 vol.36, pp.6, 2020,
  2. 지상기준점 선점 위치에 따른 DSM 높이 정확도 분석 vol.51, pp.1, 2020,
  3. 기구축 공간데이터를 활용한 3차원 건물모델의 위치정합 기법 연구 - ICP 알고리즘 구현 중심으로 - vol.51, pp.1, 2021,