• 제목/요약/키워드: Buck-boost switching converter

검색결과 112건 처리시간 0.021초

새로운 변조방식을 사용한 단상 인버터 시스템 (Single-Phase Inverter System Using New Modulation Method)

  • 이형주;원화영;임승범;홍순찬
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.29-36
    • /
    • 2010
  • 본 논문에서는 새로운 변조방식을 사용한 단상 인버터 시스템을 제안한다. 제안한 시스템은 buck-boost 변환기와 인버터로 구성되며 새로운 변조방식인 PWAM(Pulse Width/Amplitude Modulation)방식을 사용하여 제어한다. PWAM방식은 PWM(Pulse Width Modulation)방식과 PAM(Pulse Amplitude Modulation) 방식이 혼합된 새로운 변조방식이며 인버터의 입력단에 위치한 buck-boost 변환기는 일정한 직류전압을 입력으로 받아 가변 직류전압으로 변환한다. 인버터는 buck-boost 변환기에서 출력된 가변 직류전압을 입력으로 하며, PWM 구간에서는 PWM 스위칭을 하고 PAM 구간에서는 인버터가 스위칭을 하지 않음으로써 정현 교류전압으로 변환한다. 제안한 PWAM방식을 사용한 단상 인버터 시스템은 PAM 구간에서 스위칭 동작을 하지 않으므로 기존의 방식에 비해 스위칭 횟수가 감소하여 스위칭 손실을 줄일 수 있다.

Resonant CLL Non-Inverting Buck-Boost Converter

  • Jabbari, Masoud;Sharifi, Saead;Shahgholian, Ghazanfar
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents a resonant non-inverting buck-boost converter in which all switches operate under ZCS conditions. In a symmetric configuration, a CLL resonant tank along with an inverter arm and a rectifying diode are employed. The diode is turned off at ZCS and hence the problem of its reverse recovery is obviated also. As a result switching losses and EMI are reduced and switching frequency can be increased. The converter can work at DCM and CCM depend on the switching frequency and the load-current. Experimental results from a 200W/200KHz laboratory prototype verify operation of the proposed converter and the presented theoretical analysis.

고성능 절연형 벅-부스트 컨버터의 특성 해석에 관한 연구 (A Study on the Characteristic analyses of High Performance Buck-Boost Converter added Electric Isolation)

  • 곽동걸;정도영;이봉섭;김춘삼;심재선;양기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.142-144
    • /
    • 2008
  • This paper is studied on the characteristic analyses of a high performance buck-boost converter added electric isolation by using a soft switching method. To be achieved of a high performance system, the proposed buck-boost converter is constructed by using a partial resonant circuit. The control switches using in the converter are operated with soft switching for a Partial resonant method. The controlling switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the converter efficiency is high. And the proposed converter is added in a electric isolation. When the power conversion system is required to electric isolation, the proposed converter is adopted with the system development of high efficiency. The soft switching operation and system efficiency of the proposed converter is verified by digital simulation and experimental results.

  • PDF

A New Family of Non-Isolated Zero-Current Transition PWM Converters

  • Yazdani, Mohammad Rouhollah;Dust, Mohammad Pahlavan;Hemmati, Poorya
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1669-1677
    • /
    • 2016
  • A new auxiliary circuit for boost, buck, buck-boost, Cuk, SEPIC, and zeta converters is introduced to provide soft switching for pulse-width modulation converters. In the aforementioned family of DC-DC converters, the main and auxiliary switches turn on under zero current transition (ZCT) and turn off with zero voltage and current transition (ZVZCT). All diodes commutate under soft switching conditions. On the basis of the proposed converter family, the boost topology is analyzed, and its operating modes are presented. The validity of the theoretical analysis is justified by the experimental results of a 100W, 100 kHz prototype. The conducted electromagnetic emissions of the proposed boost converter are measured and found to be lower than those of another ZCT boost converter.

전류불연속 모드 절연형 벅-부스트 컨버터에 관한 연구 (A Study on Isolated Buck-Boost Converter by Discontinuous Conduction Mode)

  • 곽동걸;이봉섭;김춘삼;심재선;박영직
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2010
  • In this paper, authors propose a new buck-boost converter of discontinuous conduction mode (DCM) added electric isolation. The proposed converter with DCM eliminates the complicated circuit control requirement and reduces the size of components. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter uses a lossless snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발 (Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid)

  • 김연우;권민호;박성열;김민국;양대기;최세완;오성진
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

부분공진형 승.강압 초퍼의 새로운 토포로지 (New topology of Partial Resonant Type Buck-Boost Chopper)

  • 고강훈;라병훈;권순걸;구헌회;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.39-42
    • /
    • 1998
  • This paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operated when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.