DOI QR코드

DOI QR Code

Resonant CLL Non-Inverting Buck-Boost Converter

  • Jabbari, Masoud (Department of Electrical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Sharifi, Saead (Department of Electrical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Shahgholian, Ghazanfar (Department of Electrical Engineering, Najafabad Branch, Islamic Azad University)
  • Received : 2012.06.18
  • Published : 2013.01.20

Abstract

This paper presents a resonant non-inverting buck-boost converter in which all switches operate under ZCS conditions. In a symmetric configuration, a CLL resonant tank along with an inverter arm and a rectifying diode are employed. The diode is turned off at ZCS and hence the problem of its reverse recovery is obviated also. As a result switching losses and EMI are reduced and switching frequency can be increased. The converter can work at DCM and CCM depend on the switching frequency and the load-current. Experimental results from a 200W/200KHz laboratory prototype verify operation of the proposed converter and the presented theoretical analysis.

Keywords

References

  1. B. Sahu and G. A. Rincon-Mora, "A low voltage, dynamic, non-inverting, synchronous buck-boost converter for portable applications," IEEE Trans. Power Electron., Vol. 19, No.2, pp. 443-452, Mar. 2004. https://doi.org/10.1109/TPEL.2003.823196
  2. W.-C. Lee, S.-J. Jang, S.-S. Kim, S.-W. Lee, and C.-Y. Won, "A fuel cell generation system with a new active clamp sepic-flyback converter," Journal of Power Electronics, Vol. 9, No. 1, pp. 26-35, Jan. 2009.
  3. C. Jingquan, D. Maksimovic, and R. W. Erickson, "Analysis and design of a low-stress buck-boost converter in universal-input PFC applications," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 320-329, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869744
  4. M. Jabbari and H. Farzanehfard, "New soft switching step-down/up converter with inherent PFC performance," Journal of Power Electronics, Vol. 9, No. 6, pp. 835-844, 2009.
  5. M. Gaboriault and A. Notman, "A high efficiency, non-inverting, buck-boost Dc-Dc converter," Applied Power Electronics Conference and Exposition, pp. 1411-1415, 2004.
  6. R. Paul and D. Maksimovic, "Smooth transition and ripple reduction in 4-switch non-inverting buck-boost power converter for WCDMA RF power amplifier," IEEE ISCAS, pp. 3266-3269, 2008.
  7. C. Restrepo, J. Calvente, A. Cid, A. El Aroudi, and R. Giral, "A non-inverting buck-boost DC-DC switching converter with high efficiency and wide bandwidth," IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2490-2503, Sep. 2011. https://doi.org/10.1109/TPEL.2011.2108668
  8. P.-C. Huang, W.-Q. Wu, H.-H. Ho, and K.-H. Chen, "Hybrid buck-boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck-boost converter," IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 719-730, Mar. 2010. https://doi.org/10.1109/TPEL.2009.2031803
  9. Y.-J. Lee, A. Khaligh, and A. Emadi, "A compensation technique for smooth transitions in a non-inverting buck-boost converter," IEEE Trans. Power Electron., Vol. 24, No. 4, pp. 1002-1015, Apr. 2009. https://doi.org/10.1109/TPEL.2008.2010044
  10. Y.-J. Lee, A. Khaligh, A. Chakraborty, and A. Emadi, "Digital combination of buck and boost converters to control a positive buck-boost converter and improve the output transients," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1267-1279, May 2009. https://doi.org/10.1109/TPEL.2009.2014066
  11. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed. Hoboken, NJ: Wiley, 2002.
  12. B. T. Lin, Y. S. Lee, "A unified approach to modeling, synthesizing, and analyzing quasi-resonant converters," IEEE Trans. Power Electron., Vol. 12, No. 6, pp. 983-992, Nov. 1997. https://doi.org/10.1109/63.641496
  13. D. Maksimovic and S. Cuk, "A general approach to synthesis and analysis of quasi-resonant converters," IEEE Trans. Power Electron., Vol. 6, No. 1, pp. 127-140, Jan. 1991.
  14. K.-H. Liu, R. Oruganti, and F.C. Lee, "Quasi resonant converters-Topologies and characteristics," IEEE Trans. Power Electron., Vol. 2, No. 1, pp. 62-71, 1987. https://doi.org/10.1109/TPEL.1987.4766333
  15. E. Adib, H. Farzanehfard, "Zero-voltage-transition PWM converters with synchronous rectifier," IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 105-110, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2024153
  16. E. Adib, H. Farzanehfard, "Family of zero-voltage transition pulse width modulation converters with low auxiliary switch voltage stress," IET Power Electron., Vol. 4, No. 4, pp. 447-453, Apr. 2011. https://doi.org/10.1049/iet-pel.2010.0204
  17. E. Adib and H. Farzanehfard, "Family of zero current zero voltage transition PWM converters," IET Power Electron., Vol. 1, No. 2, pp. 214-223, Jun. 2008. https://doi.org/10.1049/iet-pel:20070225
  18. M. Jabbari and H. Farzanehfard, "Family of soft switching resonant DC-DC converters," IET Power Electron., Vol. 2, No. 2, pp. 113-124, Mar. 2009. https://doi.org/10.1049/iet-pel:20080027
  19. M. Jabbari, "Unified analysis of switched-resonator converters," IEEE Trans. Power Electron., Vol. 26, No.5, pp. 1364-1376, May 2011. https://doi.org/10.1109/TPEL.2010.2079954
  20. M. Jabbari and H. Farzanehfard, "New resonant step-down/up converters," IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 249-256, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2028734
  21. S.-K. Kwon, B. Saha, S.-P. Mun, K. Nishimura, and M. Nakaoka, "Series resonant ZCS-PFM DC-DC converter using high frequency transformer parasitic inductive components and lossless inductive snubber for high power microwave generator," Journal of Power Electronics, Vol. 9, No. 1, pp. 18-25, Jan. 2009.
  22. S.-S. Hong, S.-H. Cho, C.-W. Roh, and S.-K. Han, "Precise analytical solution for the peak gain of llc resonant converters," Journal of Power Electronics, Vol. 10, No. 6, pp. 680-685, Nov. 2010. https://doi.org/10.6113/JPE.2010.10.6.680
  23. H.-S. Choi, "Design consideration of half-bridge llc resonant converter," Journal of Power Electronics, Vol. 7, No. 1, pp. 13-20, Jan. 2007.
  24. F. Dianbo, F. C. Lee, Q. Yang, and F. Wang, "A novel high-power-density three-level LCC resonant converter with constant-power-factor-control for charging applications," IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2411-2420, Sep. 2008. https://doi.org/10.1109/TPEL.2008.2002052
  25. D. Fu, Y. Liu, F. C. Lee, and M. Xu, "A novel driving scheme for synchronous rectifiers in LLC resonant converters," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1321-1329, May 2009. https://doi.org/10.1109/TPEL.2009.2012500
  26. M. Jabbari, H. Farzanehfard, and G. Shahgholian, "Isolated Topologies of Switched-Resonator Converters," Journal of Power Electronics, Vol. 10, No. 2, pp. 125-131, Mar. 2010. https://doi.org/10.6113/JPE.2010.10.2.125
  27. G. Ivensky, I. Zeltser, A. Kats, and S. Ben-Yaakov, "Reducing IGBT losses in ZCS series resonant converters," IEEE Trans. Ind. Electron., Vol. 46, No. 1, pp. 67-74, Feb. 1999. https://doi.org/10.1109/41.744390

Cited by

  1. Family of single-switch quasi-resonant converters with reduced inductor size vol.7, pp.10, 2014, https://doi.org/10.1049/iet-pel.2013.0615
  2. A New Family of Non-Isolated Zero-Current Transition PWM Converters vol.16, pp.5, 2016, https://doi.org/10.6113/JPE.2016.16.5.1669