• Title/Summary/Keyword: Buck

Search Result 896, Processing Time 0.03 seconds

A Passive Lossless Soft-Switching Single Inductor Dual Buck Full-Bridge Inverter

  • Hong, Feng;Wu, Yu;Ye, Zunjing;Ji, Baojian;Zhou, Yufei
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.364-374
    • /
    • 2018
  • A novel passive lossless soft-switching single inductor dual buck full-bridge inverter (PLSSIDBFBI) is presented in this paper. To accomplish this, a passive lossless snubber circuit is added to a dual buck full-bridge inverter. Therefore, the advantages of the dual buck full-bridge inverter are included in the proposed inverter, and the inverter has just one filter inductor, which can decrease the system volume and improve the integration. In addition, the passive lossless snubber circuit achieves soft-switching by its own resonance, and all of the energy stored in the passive lossless snubber circuit can be transferred to load. A comparison between eight topologies is performed in this paper, and the analysis shows that the proposed soft-switching inverter topology has high reliability and efficiency. Finally, experimental results obtained with a 1 kW prototype verify the theoretical analysis and demonstrate the prominent characteristics of a reduced switching loss and improved efficiency.

Design and Making of a Buck Converter For Smart Phone Wireless Charging (스마트폰 무선충전용 강압 컨버터 설계 및 제작)

  • Park, Jong-Beom;Shin, Ji-Hee;Ahn, Sung-Deuk;Lim, Hak-Jin;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.607-614
    • /
    • 2017
  • In this research, buck converter was designed and manufactured to improve the wireless charging of smartphone through PWM control technology based on micro controller. A feedback control circuit was fabricated using a voltage sensor so that the output voltage follows the reference voltage. The buck converter, 311V is output as 12V, DC voltage 12V is connected wirelessly, and 5V charge voltage is output. We also confirmed the availability of the buck converter for wireless charging of smart phone through experiments.

Design of Buck Converter Controller in a Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 제어기 설계)

  • Park, Bong-Hee;Jeong, Seung-Whan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Generally, buck converter controller is designed to control the output voltage of the converter. However, design of the controller in a photovoltaic power conditioning system is different from theoretical design guideline. The controller in a photovoltaic power conditioning system controls the input voltage of the converter (the output voltage of the solar cell) to meet a maximum power point tracking (MPPT) performance. In this study, a new model for buck converter used in a photovoltaic power conditioning system is proposed, which is linearized after state-space averaging in each period. Also, mathematical expression of the modeled buck converter is interpreted separately as small and large signals; therefore its appropriateness is measured to design linear voltage and current controller.

A Study of Buck-Boost Current-Source PWM Inverter for Utility Interactive Photovoltaic Generation System (태양광발전과 계통연계를 위한 Buck-Boost 전류원형 PWM 인버터에 관한 연구)

  • Yang Geun-Ryoung;Kang Feel-Soon;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.63-68
    • /
    • 2002
  • In a utility interactive photovoltaic generation system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The do current becomes pulsated when the conventional inverter system operates in the continuous current mode and dc current pulsation causes the distortion of the ac current waveform. To reduce pulsation of dc input current, This paper presents a Buck-Boost PWM power inverter and its application for residential photovoltaic system. The PWM power inverter is realized by combining two sets of a high frequency Buck-Boost chopper and by making it operate in the discontinuous conduction mode. In this paper, we show the Buck-Boost PWM power inverter circuit, its equivalent circuit and basic differential equations and the power flow characteristics are clarified when the proposed Inverter is interconnected with the utility lines. In conclusion, the proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor

  • PDF

Electronic Ballast Design Driven by Low Frequency Square Wave for High Power MHL (고출력 MHL용 구형저주파 구동 방식의 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • In this paper, We proposed electronic ballast that applys Buck Converter operation principle to Full-Bridge inverter. The proposed ballast consists of an EMI Filter, a full-bridge rectifier, a passive power factor correction (PFC) circuit and a full-bridge inverter. The passive PFC is used and a Full-Bridge inverter operation by two frequency. High Side and Low Side switch was driven by high frequency and low frequency and realized buck Converter's operation. The lamp is driven by Low Frequency square wave to avoid Acoustic Resonance. Also, bulk of inductor is reduced by high frequency switching. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 700W MHL.

Analysis and Design Considerations for a High Power Buck Derived LED Driver with Extended Output Voltage and Low Total Harmonic Distortion

  • Lv, Haijun;Wu, Xinke;Zhang, Junming
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1137-1149
    • /
    • 2017
  • In order to reduce the cost, improve the efficiency and simplify the complicated control of existing isolated LED drivers, an improved boundary conduction mode (BCM) Buck ac-dc light emitting diode (LED) driver with extended output voltage and low total harmonic distortion is proposed. With a coupled inductor winding and a stacked output, its output voltage can be elevated to a much higher value when compared to that of the conventional Buck ac-dc converter, without sacrificing the input harmonics and power factor. Therefore, the proposed Buck LED driver can meet the IEC61000-3-2 (Class C) limitation and has a low THD. The operating principle of the topology and the design methodology of the ac-dc LED driver are presented. A 150 W ac-dc prototype was built in the laboratory and it shows that the input current harmonics meet the lighting standard. In addition, the THD is less than 16% at a typical ac input. The peak efficiency is higher than 96.5% at a full load and a normal input.

Design of Buck Converter Controller in the Photovoltaic Power Conditioning System (태양광 발전시스템에서의 벅 컨버터 제어기 설계)

  • Jung, Seung-Hwan;Choy, Ick;Im, Ji-Hoon;Choi, Ju-Yeop;An, Jin-Ung;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.377-382
    • /
    • 2009
  • modelling of the buck converter in photovoltaic power conditioning system is not a possibility of doing with input-output relationship from existing procedures. Because the input current and voltage of the buck converter in fluctuate at any time. The controller which design with the method which has like this error cannot have a good efficiency. In this paper, firstly, in order to design accurate controller of buck converter, new model is proposed. The modeling used a state-space averaging method and came to accomplish. Secondly, the process which design the controller is described. Finally, the simulation results are analyzed.

  • PDF

Research of DC-DC Converter for Ocean Buoy (해상용 브이에 적합한 DC-DC 컨버터 연구)

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2007
  • This paper describes the performance of DC-DC converters for buoy such as buck, boost, and buck-boost. The operating characteristic and charging efficiency with battery, which has a considerable properties about converters with PV(photovoltaic) system, is analyzed in this paper. It is performed by using the MPPT(Maximum Power Point Tracker) algorithm The basic equations of switching operation for converter are described, and the equations are analyzed with according to switch state. Whereas this analysis is directed toward the selection of converter for buoy, it also provides the insight into the behaviour of converter and performance of the proposed algorithm Finally, the suitable DC-DC converter is proposed for buoy, and the characteristic experiment is performed with the buck converter.

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.