의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어

양정환^{*}, 윤석택^{*}

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator

JeongHwan Yang^{*}, SeokTeak Yun^{*}

요 약_____

저궤도 인공위성에 사용되는 태양전력 조절기는 태양전지의 영향으로 일반적인 DC-DC 컨버터와는 다른 소신호 특성을 갖는다. 이로 인하여 벅-부스트 형 태양전력 조절기는 태양전지의 전류원 영역에서 평균전류모드제어가 불가능하다. 이 논문에서는 벅-부스 트 형 태양전력 조절기를 의사-연속전류모드로 동작시켜 태양전지의 전 영역에서 태양전력조절기를 평균전류모드 단일 제어한다. 우선 의사-연속전류모드 벅-부스트 형 태양전력 조절기의 회로 동작을 설명하고, 소신호 전달함수를 구하고 이를 바탕으로 평균전 류모드제어기를 구성한다. 최종적으로 모의실험을 통하여 의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균모드제어를 검 증한다.

Key Words : DC-DC Power Converters, Solar Array Regulator, PCCM, ACM

ABSTRACT

A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.

I. 서 론

일반적인 DC-DC 컨버터는 인덕터 전류의 평균전류모드 제어가 가능하여 병렬운전 시 전류를 용이하게 분배할 수 있 다. 그러나 저궤도 인공위성에 적용되는 태양전력 조절기는 태양전지의 특성에 영향을 받아 태양전지의 전류원 영역에 서 단일 평균전류모드제어가 불가능하여 추가로 제어기가 필요하다. 이는 태양전력 조절기가 태양전지의 전류원 영역 에서 운전할 때 우반부 영점을 가지기 때문이다[1]. 한편, 의 사-연속전류모드는 부스트 컨버터의 영점을 제거하여 부스 트 컨버터의 성능을 향상시키는데 사용된다[2]. 이 의사-연 속전류모드를 벅-부스트 형 태양전력 조절기에 적용하면 우 반부 영점이 제거되어 태양전지의 전류원 영역에서도 평균 전류모드제어가 가능해진다. 이 논문에서는 벅-부스트 형 태 양전력 조절기의 의사-연속전류모드 동작 시 회로를 분석하 고, 이 회로를 바탕으로 듀티에서 인덕터 전류까지 소신호 전달함수를 구한다. 이 소신호 전달함수를 바탕으로 평균전 류모드 제어기를 설계하고 모의실험을 통해 제어기를 검증 한다.

Ⅱ. 의사-연속전류모드 벅-부스트 컨버터

1. 회로 동작

그림 1은 의사-연속전류모드의 회로 동작을 나타낸다. 인

^{*}한국항공우주연구원 (yangjh@kari.re.kr), 교신저자 : 양정환

접수일자 : 2012년 8월 30일, 수정완료일자 : 2012년 9월 7일, 최종게재확정일자 : 2012년 9월 12일

덕터 충전구간에서는 스위치 MI과 M2가 동시에 켜진다. 인 덕터는 태양전지에 연결되어 충전된다. 태양전지에 태양전 력 조절기가 연결되어 태양전지의 동특성이 태양전력 조절 기에 영향을 미치게 된다. 이 구간을 고정시키면 태양전력 조절기의 소신호 특성을 태양전지로부터 분리할 수 있다. 인 덕터 환류구간에서는 스위치 M1이 꺼져 인덕터는 충전된 에 너지를 유지하게 된다. 인덕터 방전구간에서는 스위치 M2가 꺼져 인덕터는 충전된 에너지를 배터리에 전달한다. 인덕터 충전구간이 고정되어 있으므로 아래 식과 같이 인덕터 환류 구간과 인덕터 방전구간을 조절하여 태양전지 전압을 결정 한다.

2. 소신호 특성

구간에서 회로 방정식은 아래와 같다. 여기서 R_C , R_L 은 각각 캐패시터와 인덕터의 기생저항을 나타내고, T_S 는 스위 칭 주기를 나타낸다.

$$\begin{split} & 0 \leq t < D_C T_S \\ & L \frac{di(t)}{dt} \!=\! v_{S\!A}(t) - R_L i(t), \ C \frac{dv(t)}{dt} \!=\! i_{S\!A}(t) - i(t) \\ & D_C T_S \leq t < \! \left(D_C \!+\! D_F(t) \right) T_S \\ & L \frac{di(t)}{dt} \!=\! - R_L i(t), \ C \frac{dv(t)}{dt} \!=\! i_{S\!A}(t) \end{split}$$

$$\begin{split} & \left(D_C + D_F(t)\right)T_S \leq t < \left(D_C + D_F(t) + D_D(t)\right)T_S \\ & L\frac{di(t)}{dt} {=} - V_{BA} - R_L i(t), \ C\frac{dv(t)}{dt} {=} i_{SA}(t) \end{split}$$

위 식을 상태-공간 평균 기법을 이용하여 평균 식을 구한 후 대신호와 소신호를 분리한다. 대신호와 소신호 분리 시 인 덕터 충전구간은 고정되어 있으므로 D_c 는 상수로 취급한다. 이렇게 구한 소신호 식을 선형화 하면 표1과 같이 듀티에서 인덕터까지 소신호 전달함수를 구할 수 있다. 연속전류모드 로 운전하는 벅-부스트 형 태양전력 조절기의 경우, 태양전 지의 전류원 영역에서 태양전지의 대신호 저항 V_{SA}/I_{SA} 이 소 신호 저항 r_{sa} 보다 작으므로 우반부 영점을 가짐을 확인할 수 있다. 그러나 의사-연속전류모드로 운전하는 경우 영점은 항 상 좌반부에 위치하게 되어 평균전류모드제어가 가능하다.

표 1. 의사-연속전류모드/연속전류모드로 운전하는 벅-부스트 형 태양전력 조절기의 듀티에서 인덕터 전류까지 전달함수

3. 평균전류모드제어

그림 2. 평균전류모드제어 블록도

그림 2는 평균전류모드제어의 블록도를 나타낸다. Ri는 인덕터 전류의 측정이득이며, He(s)는 샘플링 효과에 대한 식으로 아래 식과 같다[3].

$$H_{e}(s) = 1 + \frac{s}{Q_{z}w_{n}} + \frac{s^{2}}{w_{n}^{2}}, w_{n} = \frac{\pi}{T_{s}}, Q_{z} = -\frac{2}{\pi}$$

FM은 모듈레이션 이득이며, Gc(s)와 Gp(s)는 제어기로 아래와 같다[4].

$$G_C(s) = \frac{w_{ic}}{s} \left(1 + \frac{s}{w_{zc}}\right), G_P(s) = \frac{1}{1 + \frac{s}{w_{zc}}}$$

태양전력 조절기의 파라미터와 평균전류모드 제어기의 파라미터를 표2에 나타내었다. 이를 바탕으로 평균전류모드 로 제어되는 의사-연속전류모드 벅-부스트 형 태양전력 조 절기의 루프이득 보드선도를 그림3에 나타내었다. 보드선도 로부터 평균전류모드 제어기가 태양전지 전 영역에서 안정 하게 설계되었음을 확인할 수 있다.

	전류원	최대전력점	전압원
태양전지 전압	63[V]	73[V]	81[V]
태양전지 전류	3.7[A]	3.5[A]	2.2[A]
태양전지 소신호저항	-71[Ω]]	-31[Ω]	-4.1[Ω]
배터리전압	60[V]		
$L(R_L)$	$100[\mu H],(10[m\Omega])$		
$C(R_C)$	100[µF],(10[mΩ])		
T_S	10[µs]		
D_C	0.4		
w_{ic}	$2\pi imes 2k$ [rad/s]		
w_{zc}	$2\pi imes 1.5 k$ [rad/s]		
w_{pc}	$2\pi imes 80k$ [rad/s]		

표 2. 태양전력 조절기와 평균전류모드 제어기 파라미터

Ⅲ. 모의실험

MATLAB SIMULINK로 그림 4와 같이 Testbed를 구성 하여 모의실험을 진행하였다. 모의실험에 사용한 태양전력 조절기의 파라미터는 표2와 같다. 평균전류모드 제어기의 제 어기준전류를 0.1[A]씩 증가시켜 태양전지의 전 영역에서 인 덕터 전류를 평균전류모드로 제어하였다. 그림 5의 모의실험 결과와 같이 제어되는 인덕터 전류가 증가함에 따라 태양전 지의 동작점은 전압원 영역에서 최대전력점을 거쳐 전류원 영역으로 이동한다. 의사-전류연속모드로 태양전력 조절기 를 운전하면 단일 평균전류모드 제어기만으로도 태양전지 전 영역에서 인덕터 전류를 안정적으로 제어할 수 있음을 확 인할 수 있다.

그림 4. 평균전류모드로 제어되는 의사-연속전류모드 벅-부스 트형 태양전력조절기의 모의실험을 위한 Testbed

Ⅳ. 결론

이 논문에서는 단일 평균전류모드제어가 불가능한 벅-부 스트형 태양전력 조절기를 의사-연속전류모드 운전을 통해 단일 평균전류모드제어를 가능하게 하였다. 의사-연속전류 모드 벅-부스트 태양전력 조절기의 회로 동작을 설명하고 소신호 전달함수를 바탕으로 평균전류모드 제어기를 설계하 였다. 모의실험을 통해 평균전류모드로 제어되는 의사-연속 전류모드 벅-부스트 태양전력 조절기를 검증하였다.

그림 5. 평균전류모드로 제어되는 의사-연속전류모드 벅-부스 트형 태양전력 조절기의 모의실험 결과

참 고 문 헌

- J.H. Lee, H.S. Bae, S.H. Park, B.H. Cho, "Constant Resistance Control of Solar Array Regulator Using Average Current Mode Control", APEC 06, pp. 1544–1549, 2006
- [2] Viswanathan, K, Oruganti, R, Srinivasan, D. "Tri-state boost converter with no right half plane zero", Power Electronics and Drive Systems, vol. 2, pp. 687–693, 2001
- [3] Wei Tang, Fred C. Lee, Raymond B. Ridley, "Small-Signal Modeling of Average Current-Mode Control", IEEE TRANSACTION ON POWER ELECTRONICS, vol. 8, no. 2, pp. 112–119, 1993.
- [4] Raymond B. Ridely. "A New, Continuous-Time Model For Current-Mode Control", IEEE TRANSACTION ON POWER ELECTRONICS, vol. 6, no. 2, pp 271–280, 1991.

저자

양 정 환(JeongHwan Yang)

- ·2006년 2월 : 서울대학교 전기컴퓨터 공학부 학사졸업
- ·2008년 2월 : 서울대학교 전기컴퓨터 공학부 석사졸업
- ·2011년 ~ 현재 : 한국항공우주연구원

<관심분야> : 위성용 전력회로, 전력회로 제어 및 모델링

윤 석 택(SeokTeak Yun)

- ·2005년 7월 : 포항공과대학교 전자전 기공학과 학사졸업
- ·2007년 8월 : 서울대학교 전기컴퓨터 공학부 석사졸업
- ·2007년 ~ 현재 : 한국항공우주연구원

<관심분야> : 위성설계 및 운용, 위성용 전력회로