• Title/Summary/Keyword: Bubble model

Search Result 304, Processing Time 0.027 seconds

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Deflection of a Thin Solid Structure by a Thermal Bubble (열 기포에 의한 고체 박막의 변형 해석)

  • Kim, Ho-Young;Lee, Yoon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Utilization of CFD Simulation Model for a Bubble Column Photobioreactor (버블 칼럼 광생물반응기의 내부 유동분석을 위한 전산유체역학 시뮬레이션 모델의 이용)

  • Yoo, J.I.;Lee, I.B.;Hwang, H.S.;Hong, S.W.;Seo, I.H.;Bitog, J.P.;Kwon, K.S.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • Photobioreactor (PBR) that houses and cultivates microalgae providing a suitable environment for its growth, such as light, nutrients, CO2, heat, etc. is now getting more popular in the last decade. Among the many types of PBRs, the bubble column type is very attractive because of its simple construction and easy operation. However, despite the availability of these PBRs, only a few of them can be practically used for mass production. Many limitations still holdback their use especially during their scale-up. To enlarge the culture volume and productivity while supplying optimum environmental conditions, various PBR structures and process control are needed to be investigated. In this study, computational fluid dynamics (CFD) was economically used to design a bubble-column type PBR taking the place of field experiments. CFD is a promising technique which can simulate the growth and production of microalgae in the PBR. To study bubble column PBR with CFD, the most important factor is the possibility of realizing bubble. In this study, multi-phase models which are generally used to realize bubbles were compared by theoretical approaches and comparing in a 2D simulation. As a result, the VOF (volume of fluid) model was found to be the most effective model to realize the bubbles shape as well as the flow inside PBR which may be induced by bubble injection. Considering the accuracy and economical efficiency, 0.005 second time step size was chosen for 2.5 mm mesh size. These results will be used as criteria for scale-up in the PBR simulation.

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

Intrinsic bubbles in the case of stock prices : A note (내재적 거품모형에 관한 이론적 연구)

  • Kim, Kyou-Yung
    • The Korean Journal of Financial Management
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 1998
  • A simple general equilibrium model, where risk aversion and dividend process switching play a key role, shows that a stock price in a bubble-free economy can be observationally equivalent to that of the intrinsic bubble economy. Specifically, I seek a set of conditions under which the functional form of asset prices in the bubble-free economy is the same as that in the intrinsic bubble approach.

  • PDF

Numerical Simulation of Bubble-Free Surface Interaction (기포-자유표면 상호작용에 대한 수치적 고찰)

  • Yang Chan-Kyu;Kim Hyeon-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.