Browse > Article
http://dx.doi.org/10.1016/j.net.2021.07.034

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy  

Jiang, Yanbo (Department of Nuclear Science and Technology, Xi'an Jiaotong University)
Xin, Yong (Science and Technology on Reactor System Design Technology Laboratory)
Liu, Wenbo (Department of Nuclear Science and Technology, Xi'an Jiaotong University)
Sun, Zhipeng (Science and Technology on Reactor System Design Technology Laboratory)
Chen, Ping (Science and Technology on Reactor System Design Technology Laboratory)
Sun, Dan (Science and Technology on Reactor System Design Technology Laboratory)
Zhou, Mingyang (Science and Technology on Reactor System Design Technology Laboratory)
Liu, Xiao (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics)
Yun, Di (Department of Nuclear Science and Technology, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.54, no.1, 2022 , pp. 226-233 More about this Journal
Abstract
In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.
Keywords
Phase-field; U-Mo; Bubble; Recrystallization; Fission density;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Xiao, Y. Wang, S. Hu, A quantitative phase-field model of gas bubble evolution in UO2, Comput. Mater. Sci. 184 (2020) 109867, https://doi.org/10.1016/j.commatsci.2020.109867.   DOI
2 J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258-267, https://doi.org/10.1063/1.1744102.   DOI
3 I. Steinbach, Phase-field model for microstructure evolution at the mesoscopic scale, Annu. Rev. Mater. Res. 43 (2013) 89-107, https://doi.org/10.1146/annurev-matsci-071312-121703.   DOI
4 P.C. Millett, A. El-Azab, S. Rokkam, Phase-field simulation of irradiated metals: Part I: void kinetics, Comput. Mater. Sci. 50 (2011) 949-959, https://doi.org/10.1016/j.commatsci.2010.10.034.   DOI
5 J. Rest, G.L. Hofman, Effect of recrystallization in high-burnup UO{sub 2} on gas release during RIA-type transients, 1994, https://doi.org/10.2172/432943.ANL/ET/PP-84776.   DOI
6 N. Moelans, A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems, Acta Mater. 59 (2011) 1077-1086, https://doi.org/10.1016/j.actamat.2010.10.038.   DOI
7 S. Van den Berghe, P. Lemoine, Review of 15 years of high-density low-enriched UMo dispersion fuel development for research reactors in Europe, Nucl. Eng. Technol. 46 (2014) 125-146, https://doi.org/10.5516/NET.07.2014.703.   DOI
8 R.M. Berman, Fission fragment distribution in irradiated UO2,, Nucl. Sci. Eng. 16 (1963) 315-328, https://doi.org/10.13182/NSE63-A26534.   DOI
9 J. Gan, D.D. Keiser, B.D. Miller, TEM characterization of U-7Mo/Al-2Si dispersion fuel irradiated to intermediate and high fission densities, J. Nucl. Mater. 424 (2012) 43-50, https://doi.org/10.1016/j.jnucmat.2012.02.001.   DOI
10 J. Spino, D. Baron, M. Coquerelle, High burn-up rim structure: evidences that xenon-depletion, pore formation and grain subdivision start at different local burn-ups, J. Nucl. Mater. 256 (1998) 189-196, https://doi.org/10.1016/S0022-3115(98)00060-9.   DOI
11 S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6e83 GWd/t, J. Nucl. Mater. 206 (1993) 22-34, https://doi.org/10.1016/0022-3115(93)90229-R.   DOI
12 V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, Mater. Today 13 (2010) 24-32, https://doi.org/10.1016/S1369-7021(10)70221-2.   DOI
13 J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterizations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339, https://doi.org/10.1016/j.jnucmat.2007.04.037.   DOI
14 M.K. Meyer, G.L. Hofman, S.L. Hayes, Low-temperature irradiation behavior of Uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236, https://doi.org/10.1016/S0022-3115(02)00850-4.   DOI
15 Y. Wang, Z. Xiao, S. Hu, A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient, Comput. Mater. Sci. 183 (2020) 109817, https://doi.org/10.1016/j.commatsci.2020.109817.   DOI
16 G.L. Hofman, G.L. Copeland, J.E. Sanecki, Microscopic investigation into the irradiation behavior of U3O8-Al dispersion fuel, Nucl. Technol. 72 (1986) 338-344, https://doi.org/10.13182/NT86-A33772.   DOI
17 J. Spino, K. Vennix, M. Coquerelle, Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40-67 GWd/tM, J. Nucl. Mater. 231 (1996) 179-190, https://doi.org/10.1016/0022-3115(96)00374-1.   DOI
18 S.Y. Hu, W. Setyawan, V.V. Joshi, Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels, J. Nucl. Mater. 490 (2017) 49-58, https://doi.org/10.1016/j.jnucmat.2017.04.016.   DOI
19 J.L. Snelgrove, G.L. Hofman, M.K. Meyer, Development of very-high-density low-enriched-uranium fuels, Nucl. Eng. Des. 178 (1997) 119-126, https://doi.org/10.1016/s0029-5493(97)00217-3.   DOI
20 D.D. Keiser, S.L. Hayes, M.L. Meyer, High-density, low-enriched uranium fuel for nuclear research reactors, JOM (J. Occup. Med.) 55 (2003) 55-58, https://doi.org/10.1007/s11837-003-0031-0.   DOI
21 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements: Solutions to Problems, California Univ, Berkeley (USA), 1976. Dept. of Nuclear Engineering.
22 Y.S. Kim, G.L. Hofman, Fission product induced swelling of U-Mo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301, https://doi.org/10.1016/j.jnucmat.2011.08.018.   DOI
23 R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 1987. United States.
24 H. Matzke, On the rim effect in high burnup UO2 LWR fuels, JNuM 189 (1992) 141-148, https://doi.org/10.1016/0022-3115(92)90428-N.   DOI
25 L. Liang, Y.S. Kim, Z.G. Mei, Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels, J. Nucl. Mater. 511 (2018) 438-445, https://doi.org/10.1016/j.jnucmat.2018.09.054.   DOI
26 J. Rest, An analytical study of gas-bubble nucleation mechanisms in uranium-alloy nuclear fuel at high temperature, J. Nucl. Mater. 402 (2010) 179-185, https://doi.org/10.1016/j.jnucmat.2010.05.022.   DOI
27 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, United State, 1976, https://doi.org/10.2172/7343826. TID-26711-P1.   DOI
28 Z.G. Mei, L. Liang, A.M. Yacout, First-principles study of the surface properties of U-Mo system, Comput. Mater. Sci. 142 (2018) 355-360, https://doi.org/10.1016/j.commatsci.2017.10.033.   DOI
29 S. Hu, A.M. Casella, C.A. Lavender, Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76, https://doi.org/10.1016/j.jnucmat.2015.03.039.   DOI
30 N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Phys. Rev. B 78 (2008), 024113, https://doi.org/10.1103/PhysRevB.78.024113.   DOI
31 A. Cheniour, M.R. Tonks, B. Gong, Development of a grain growth model for U3Si2 using experimental data, phase field simulation and molecular dynamics, J. Nucl. Mater. (2020) 152069, https://doi.org/10.1016/j.jnucmat.2020.152069.   DOI
32 H.X. Xiao, C.S. Long, X.F. Tian, Atomistic simulations of the small xenon bubble behavior in U-Mo alloy, Mater. Des. 74 (2015) 55-60, https://doi.org/10.1016/j.matdes.2015.02.005.   DOI
33 J. Rest, A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels, J. Nucl. Mater. 326 (2004) 175-184, https://doi.org/10.1016/j.jnucmat.2004.01.009.   DOI
34 P.C. Millett, M.R. Tonks, S.B. Biner, Phase-field simulation of intergranular bubble growth and percolation in biocrystals, J. Nucl. Mater. 425 (2012) 130-135, https://doi.org/10.1016/j.jnucmat.2011.07.034.   DOI
35 J. Rest, The effect of irradiation-induced gas-atom re-solution on grain-boundary bubble growth, J. Nucl. Mater. 321 (2003) 305-312, https://doi.org/10.1016/S0022-3115(03)00303-9.   DOI
36 Y.S. Kim, J.M. Park, K.H. Lee, In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al, J. Nucl. Mater. 454 (2014) 238-246, https://doi.org/10.1016/j.jnucmat.2014.08.005.   DOI
37 J. Rest, Model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 324 (2005) 226-232, https://doi.org/10.1016/j.jnucmat.2005.06.012.   DOI
38 M.R. Tonks, D. Gaston, C. Permann, A coupling methodology for mesoscale-informed nuclear fuel performance codes, Nucl. Eng. Des. 240 (2010) 2877-2883, https://doi.org/10.1016/j.nucengdes.2010.06.005.   DOI
39 Z.G. Mei, L. Liang, Y.S. Kim, Grain growth in Ue7Mo alloy: a combined first-principles and phase field study, J. Nucl. Mater. 473 (2016) 300-308, https://doi.org/10.1016/j.jnucmat.2016.01.027.   DOI
40 Y.B. Jiang, W.B. Liu, W.J. Li, Phase-field simulation of the interaction between intergranular voids and grain boundaries during radiation in UO2, Comput. Mater. Sci. (2020) 110176, https://doi.org/10.1016/j.commatsci.2020.110176.   DOI
41 P.C. Millett, A. El-Azab, D. Wolf, Phase-field simulation of irradiated metals: Part II: gas bubble kinetics, Comput. Mater. Sci. 50 (2011) 960-970, https://doi.org/10.1016/j.commatsci.2010.10.032.   DOI
42 L.Q. Chen, Y. Wei, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B 50 (1994) 15752, https://doi.org/10.1103/PhysRevB.50.15752.   DOI
43 M.G. Abdoelatef, F. Badry, D. Schwen, Mesoscale modeling of high burn-up structure formation and evolution in UO2, JOM (J. Occup. Med.) 71 (2019) 4817-4828, https://doi.org/10.1007/s11837-019-03830-z.   DOI
44 L. Liang, Z.G. Mei, Y.S. Kim, Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel, Comput. Mater. Sci. 145 (2018) 86-95, https://doi.org/10.1016/j.commatsci.2017.12.061.   DOI
45 K. Nogita, K. Une, Radiation-induced microstructural change in high burnup UO2 fuel pellets, Nucl. Instrum. Methods Phys. Res., Sect. B 91 (1994) 301-306, https://doi.org/10.1016/0168-583X(94)96235-9.   DOI
46 Y.S. Kim, G.L. Hofman, J.S. Cheon, Recrystallization and fission-gas-bubble swelling of U-Mo fuel, J. Nucl. Mater. 436 (2013) 14-22, https://doi.org/10.1016/j.jnucmat.2013.01.291.   DOI
47 L. Liang, Z.G. Mei, A.M. Yacout, Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel, Comput. Mater. Sci. 138 (2017) 16-26, https://doi.org/10.1016/j.commatsci.2017.06.013.   DOI
48 S. Hu, V. Joshi, C.A. Lavender, A rate-theoryephase-field model of irradiation-induced recrystallization in UMo nuclear fuels, JOM (J. Occup. Med.) 69 (2017) 2554-2562, https://doi.org/10.1007/s11837-017-2611-4.   DOI