• Title/Summary/Keyword: Broadband amplifier

Search Result 118, Processing Time 0.021 seconds

Broadcast Signal Transmission on a WDM-PON System Using a Polarization Independent RSOA and a Broadband ASE Light Source (광대역 ASE 광원과 PI-RSOA를 이용한 WDM-PON 시스템에서의 방송 신호 전송)

  • Oh, Yeong Guk;Lee, Hyuek Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.264-268
    • /
    • 2012
  • In this paper, we propose a new method for broadcasting in a WDM-PON system which has the merits of a simple and cost effective structure. It can be constructed using only an ASE (Amplified Spontaneous Emission) light source and a PI-RSOA (Polarization Independent - Reflective Semiconductor Optical Amplifier). Error-free broadcast signal transmission over 30 Km for 24 channels at 1.25 Gb/s has been successfully demonstrated.

Performances of Erbium-Doped Fiber Amplifier Using 1530nm-Band Pump for Long Wavelength Multichannel Amplification

  • Choi, Bo-Hun;Chu, Moo-Jung;Park, Hyo-Hoon;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The performance of a long wavelength-band erbium-doped fiber amplifier (L-band EDFA) using 1530nm-band pumping has been studied. A 1530nm-band pump source is built using a tunable light source and two C-band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L-band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L-band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm-band pump. The L-band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of -10dBm/ch. These results demonstrate that 1530nm-band pump can be used as a new efficient pump source for L-band EDFAs.

  • PDF

0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment (3G, 4G LTE 환경에 적합한 0.11μm CMOS 저전력, 광대역의 저잡음증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Seong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1027-1034
    • /
    • 2014
  • We present the Low Power Broadband Low noise amplifier(LNA) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of -10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode.

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

Design and Fabrication of 5 GHz Band MMIC Power Amplifier for Wireless LAN Applications Using Size Optimization of PHEMTs (PHEMT 크기 최적화를 이용한 무선랜용 5 GHz 대역 MMIC 전력증폭기 설계 및 제작)

  • Park Hun;Hwang In-Gab;Yoon Kyung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.634-639
    • /
    • 2006
  • In this paper an MMIC 2-stage power amplifier is designed and fabricated for 5GHz wireless LAN applications using $0.5{\mu}m$ gate length PHEMT transistors. The PHEMT gate width is optimized in order to meet the linearity and efficiency of the MMIC power amplifier. The $0.5{\mu}m\times600{\mu}m$ PHEMT for the drive stage and $0.5{\mu}m\times3000{\mu}m$ PHEMT for the amplification stage are the optimized sizes to achieve more than 25dBc of third order IMD at the power level of 3dB back-off from the input P1dB and more than 22dBm output power under a supply voltage of 3.3V. The two-stage MMIC power amplifier is designed to be used for the both of HIPERLAN/2 and IEEE 802.11a because of its broadband characteristics. The fabricated PHEMT MMIC power amplifier exhibits a 20.1dB linear power gain, a maximum 22dBm output power, a 24% power added efficiency under 3.3V supply voltage. The input and output on-chip matching circuits are included on a chip of $1400\times1200{\mu}m^2$.

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.

Design of Wideband Cascode Amplifiers Using a Feedback Structure (피드백 구조를 갖는 광대역 캐스코드 증폭기의 설계)

  • Lee, Jaehoon;Lim, Jongsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.720-725
    • /
    • 2015
  • This paper describes the design of a wideband cascode amplifier using a feedback network and microwave small-signal transistors. The adopted cascode structure enables the miller effect to be lessened, cutoff frequency to increase, and reduction of gain in the mid-band to be mitigated. In addition, a feedback network is added to the cascode structure to improve the input matching and ripple performances over the wide operating band. The designed cascode amplifier contains a feedback network for small size and broadband amplification, whereas balanced amplifiers and distributed amplifiers have been used widely. The measurement shows $8.5dB{\pm}1.5dB$ of gain over 1000-2000MHz. The fabricated cascode amplifier has more than 8dB of gain over a 1000MHz bandwidth with a good flatness. The measured performances agree with the predicted ones even a minor shift in operating frequency is observed.

Comparative Adjacent Channel Power Ratio Analysis in an OFDM-RoF Access Link (OFDM-ROF 가입자링크의 인접채널전력비 해석)

  • Razibul Islam A.H.M.;Imrul Md.;Song Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.17-23
    • /
    • 2006
  • In this paper, Adjacent Channel Power Ratio (ACPR) of wireless Orthogonal Frequency Division Multiplexed (OFDM) system interconnected with Radio over Fiber (RoF) link is analyzed for broadband convergence network applications. Unlike previous results, ACPR of the total link, which is involved with Radio Frequency (RF) amplifier as well as ROF link, at 5.8 GHz in IEEE 802.11a environment is simulated and compared at both system ends.

Design and Implementation of Broadband Low Noise Amplifier for Satellite Broadcasting Receiver (위성방송 수신용 광대역 저잡음 증폭기 설계 및 구현)

  • 이원규;양운근;윤광욱;박정우
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.209-212
    • /
    • 2002
  • 본 논문에서는 위성방송 수신용 광대역 저잡음 증폭기를 설계 및 구현하였다. 전산모의 실험용 소프트웨어를 사용하여 저잡음 증폭기를 설계하였고, 제작된 저잡음 증폭기의 전기적 특성을 네트워크 분석기와 Noise Figure 분석기를 사용하여 측정하였다. LNA단의 Noise Figure에 중점을 두고 샘플을 제작하여 측정한 길과 전산모의실험에서 나온 데이터는 0.46㏈이하였고 전체 시스템에서 측정된 Noise figure는 0.6㏈정도의 좋은 길과를 나타내었지만, 반면에 이득과 반사손실의 결과가 약간 떨어짐을 보였다 위성 인터넷 등 위성을 이용하는 통신 인구의 급격한 증가와 더불어 구현된 저잡음 증폭기를 사용한 LNB(Low Noise Block down converter)가 널리 응용될 것으로 기대된다.

  • PDF

A Novel Air-Gap Stacked Microstrip 3 dB Coupler for MMIC (공기 절연 적층형 마이크로스트립 구조의 새로운 3 dB 커플러 MMIC)

  • 류기현;김대현;이재학;서광석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.688-693
    • /
    • 1999
  • This paper presents a very simple coupled line structure for MMIC which uses stacked microstrip line and does not employ any dielectric process step. For the analysis and optimization of these coupled line structure, HP-Momentum was used. The measured performance of 3 dB coupler shows 23 to 45 GHz broadband characteristics. Additionally, a balanced 2-stage Ka-Band power amplifier which uses the proposed 3 dB coupler, was also fabricated.

  • PDF