• Title/Summary/Keyword: Brittle

Search Result 1,762, Processing Time 0.029 seconds

Simulation of Interface Ageing Effect of Suspension Insulator Using ANSYS (ANSYS를 이용한 현수애자의 계면팽창거동에 따른 특성 평가)

  • 우병철;한세원;조한구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.342-347
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to b mechanical failure ageing.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Failure Mechanism and Test Method for Reliability Standardization of Solder Joints (솔더조인트의 신뢰성 표준화를 위한 취성파괴 메커니즘 및 평가법 연구)

  • Kim, Kang-Dong;Huh, Seok-Hwan;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.85-90
    • /
    • 2011
  • With regard to reliability of solder joint, the significant failures include open defects that occurs from alignment problem, Head in Pillow by PCB's warpage, the crack of solder by CTE mismatch, and the crack of IMC layer by mechanical impact. Especially as PCB down-sizing and surface finish is under progress, brittle failure of IMC layer between solder bump and PCB pad becomes a big issue. Therefore, it requires enhancing the level of difficulty in the existing assessment method and improving the measurement through the study on the mechanism of IMC formation, growth and brittle failure. Under this circumstance, this study is intended to suggest the direction of research for improving the reliability on the crack such as improvement of IMC brittle fracture.

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally aged 2.25Cr-1Mo Steel by Electrical Resistivity Measurement (전기비저항을 이용한 2.25Cr-1Mo 강 열화재의 미세조직 및 연성-취성천이온도 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.284-291
    • /
    • 2002
  • An attempt was made to evaluate the degree of aging degradation in thermally aged 2.25Cr-1Mo steel by electrical resistivity measurement. Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural parameter (amount of solid solution element), mechanical property (ductile-brittle transition temperature) and electrical resistivity were measured to investigate the mutual relationship among these parameters. Depletion of solid solution element(Mo and Cr) in matrix was detected after aging. The ductile-brittle transition temperature(DBTT) increased rapidly in the initial stage of aging and then saturated afterward. On the other hand, the electrical resistivity decreased rapidly in the beginning and then saturated in the later stage of aging.

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 2. Effects of time of Pd activation (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 2. Pd 촉매 시간의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The reliability of solder joint is significantly affected by the property of surface finish. This paper reports on a study of high speed shear energy and failure mode for Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with the time of Pd activation. The nodule size of electroless Ni-P deposit increased with increasing the time of Pd activation. The roughness (Ra) of electroless Ni-P deposit decreased with increasing the time of Pd activation. Then, with $HNO_3$ vapor, the quasi-brittle and brittle mode of SAC405 solder joint decreased with increasing the time of Pd activation. This results indicate that the increase in the Pd activation time for Electroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface finish play a critical role for improving the robustness of SAC405 solder joint.

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향)

  • Lee, Seung-Yong;Jeong, Sang-Woo;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo;Jo, Woosung;Kim, Wansun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

Numerical Evaluation of the Rock Damaged Zone Around a Deep Tunnel (손상모델을 이용한 심부터널 주변암반의 손상영역 평가)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.99-108
    • /
    • 2002
  • The nonlinear-brittle-plastic model derived from experiments as well as elastic and elasto-plastic models was applied to the analysis of the rock damaged zone around a highly stressed circular tunnel. The depths of stress redistribution and disturbed zone as well as the characteristic behaviors predicted from each numerical model were compared, As the magnitudes and stress differences of in situ stresses increased, influences of stress redistribution and stress disturbance on un(tiled region of rock mass also intensified. As a result, larger stress redistribution and disturbed zone as well as greater deviatoric stress and displacement were obtained by the nonlinear-brittle-plastic model rather than other conventional models such as elasto-plastic and elastic models. from such results, it was concluded that as the magnitudes and stress differences of in situ stresses increased, larger rock damaged zone might be predicted by the nonlinear-brittle-plastic model. Therefore, it is thought that the damage analysis may be indispensable far highly stressed tunnels.