Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.11.583

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure  

Lee, Seung-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jeong, Sang-Woo (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.25, no.11, 2015 , pp. 583-589 More about this Journal
Abstract
This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.
Keywords
ferrite-pearlite structure; hypoeutectoid steel; impact toughness; microstructural factors; ductile-brittle transition temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Kim, M. Kang, C. M. Bae, H. S. Kim and S. Lee, Metall. Mater. Trans. A, 45, 1294 (2014).   DOI
2 Li Zhuang, Wu Di and Lu Wei, J. Iron Steel Res. Int., 19, 64 (2012).
3 H. Kim, M. Kang, H. J. Jung, H. S. Kim, C. M. Bae and S. Lee, Mater. Sci. Eng. A, 571, 38 (2013).   DOI
4 B. K. Hwang, T. W. Jung, Y. S. Lee, J. M. Choi and Y. H. Moon, Trans. Mater. Process, 19, 210 (2010).   DOI
5 J. P. Houin, A. Simon and G. Beck, Trans. Iron Steel Inst. Jpn., 21, 726 (1981).   DOI
6 J. A. Rinebolt and W. J. Harris, Trans. Am. Soc. Met., 43, 1175 (1951).
7 K. W. Burns and F. B. Pickering, J. Iron Steel Inst., 202, 899 (1964).
8 F. B. Pickering, Microalloying 75. Ed. M. Korchynsky (Union Carbide Corp., New York, 1977) p.9.
9 T. Gladman, I. D. McIvor and F. B. Pickering, J. Iron Steel Inst., 210, 916 (1972).
10 P. R. Howell, Mat. Char., 40, 227 (1998).   DOI
11 D. A. Porter, K. E. Easterling and M. Sherif, Phase Transformations in Metals and Alloys, CRC Press (2009).
12 J. W. Christian, The Theory of Transformations in Metals and Alloys, Newnes (2002).
13 B. E. Q'Donnelly, R. L. Reuben and T. N. Baker, Met. Technol., 11, 45 (1984).   DOI
14 D. Cheetham and N. Ridley, Met. Sci. J., 9, 411 (1975).
15 J. J. Lewandowski and A. W. Thompson, Metall. Trans. A, 17, 461 (1986).
16 J. M. Hyzak and I. M. Bernstein, Metall. Trans. A, 7, 1217 (1976).   DOI
17 F. B. Pickering and B. Garbarz, Scripta Metall., 21, 249 (1987).   DOI
18 L. E. Miller and G. C. Smith, J. Iron Steel Inst., 208, 998 (1970).
19 G. Krauss, Steels: Heat Treatment and Processing Principles, ASM Intl. (1990).