• Title/Summary/Keyword: Breast cell invasion

Search Result 113, Processing Time 0.022 seconds

PKCδ-dependent Activation of the Ubiquitin Proteasome System is Responsible for High Glucose-induced Human Breast Cancer MCF-7 Cell Proliferation, Migration and Invasion

  • Zhu, Shan;Yao, Feng;Li, Wen-Huan;Wan, Jin-Nan;Zhang, Yi-Min;Tang, Zhao;Khan, Shahzad;Wang, Chang-Hua;Sun, Sheng-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5687-5692
    • /
    • 2013
  • Type 2 diabetes mellitus (T2DM) has contributed to advanced breast cancer development over the past decades. However, the mechanism underlying this contribution is poorly understood. In this study, we determined that high glucose enhanced proteasome activity was accompanied by enhanced proliferation, migration and invasion, as well as suppressed apoptosis, in human breast cancer MCF-7 cells. Proteasome inhibitor bortezomib (BZM) pretreatment mitigated high glucose-induced MCF-7 cell growth and invasion. Furthermore, high glucose increased protein kinase C delta ($PKC{\delta}$)-phosphorylation. Administration of the specific $PKC{\delta}$ inhibitor rottlerin attenuated high glucose-stimulated cancer cell growth and invasion. In addition, $PKC{\delta}$ inhibition by both rottlerin and $PKC{\delta}$ shRNA significantly suppressed high glucose-induced proteasome activity. Our results suggest that $PKC{\delta}$-dependent ubiquitin proteasome system activation plays an important role in high glucose-induced breast cancer cell growth and metastasis.

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells

  • Bae, Sung Hun;Park, Ju Ho;Choi, Hyeon Gyeom;Kim, Hyesook;Kim, So Hee
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.494-502
    • /
    • 2018
  • Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.

Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells

  • Oh, Sunhwa;Kim, Hyungjoo;Nam, KeeSoo;Shin, Incheol
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.132-137
    • /
    • 2017
  • Elevated glucose levels in cancer cells can be attributed to increased levels of glucose transporter (GLUT) proteins. Glut1 expression is increased in human malignant cells. To investigate alternative roles of Glut1 in breast cancer, we silenced Glut1 in triple-negative breast-cancer cell lines using a short hairpin RNA (shRNA) system. Glut1 silencing was verified by Western blotting and qRT-PCR. Knockdown of Glut1 resulted in decreased cell proliferation, glucose uptake, migration, and invasion through modulation of the EGFR/MAPK signaling pathway and integrin ${\beta}1$/Src/FAK signaling pathways. These results suggest that Glut1 not only plays a role as a glucose transporter, but also acts as a regulator of signaling cascades in the tumorigenesis of breast cancer.

4-Hydroxynonenal Promotes Growth and Angiogenesis of Breast Cancer Cells through HIF-1α Stabilization

  • Li, Yao-Ping;Tian, Fu-Guo;Shi, Peng-Cheng;Guo, Ling-Yun;Wu, Hai-Ming;Chen, Run-Qi;Xue, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10151-10156
    • /
    • 2015
  • 4-Hydroxynonenal (4-HNE) is a stable end product of lipid peroxidation, which has been shown to play an important role in cell signal transduction, while increasing cell growth and differentiation. 4-HNE could inhibit phosphatase and tensin homolog (PTEN) activity in hepatocytes and increased levels have been found in human invasive breast cancer. Here we report that 4-HNE increased the cell growth of breast cancer cells as revealed by colony formation assay. Moreover, vascular endothelial growth factor (VEGF) expression was elevated, while protein levels of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) were up-regulated. Sirtuin-3 (SIRT3), a major mitochondria NAD+-dependent deacetylase, is reported to destabilize HIF-$1{\alpha}$. Here, 4-HNE could inhibit the deacetylase activity of SIRT3 by thiol-specific modification. We further demonstrated that the regulation by 4-HNE of levels of HIF-$1{\alpha}$ and VEGF depends on SIRT3. Consistent with this, 4-HNE could not increase the cell growth in SIRT3 knockdown breast cancer cells. Additionally, 4-HNE promoted angiogenesis and invasion of breast cancer cells in a SIRT3-dependent manner. In conclusion, we propose that 4-HNE promotes growth, invasion and angiogenesis of breast cancer cells through the SIRT3-HIF-$1{\alpha}$-VEGF axis.

Tubeimoside-1 suppresses breast cancer metastasis through downregulation of CXCR4 chemokine receptor expression

  • Peng, Yaojin;Zhong, Yan;Li, Gao
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • To examine the effect of TBMS1on breast cancer metastasis, and investigate the potential mechanism by which Tubeimoside-1 (TBMS1) inhibits the CXCR4 expression in breast cancer cells. The expression of CXCR4 in breast cancer cell lines was determined by immunoblotting and real-time PCR. The effect of TBMS1 on NF-κB binding activity was evaluated by EMSA assay and ChIP analysis. Cell proliferation and invasion were analyzed by MTT assay and transwell invasion assay, respectively. The effect of TBMS1 on breast cancer metastasis was further evaluated in a metastasis model of nude mice. TBMS1 suppressed the expression of CXCR4 through inhibition of NF-κB binding activity. TBMS1 inhibited CXCL12-induced invasion in breast cancer cells, while ectopic expression of CXCR4 abolished the inhibitive activity of TBMS1. TBMS1 suppressed breast cancer metastasis in the metastatic model of nude mice. TBMS1 suppressed the CXCR4-mediated metastasis of breast cancer by inhibiting NF-κB binding activity.

Suppression of Human Breast Cancer Cell Metastasis by Coptisine in Vitro

  • Li, Jing;Qiu, Dong-Min;Chen, Shao-Hua;Cao, Su-Ping;Xia, Xue-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5747-5751
    • /
    • 2014
  • Background: Coptisine, an isoquinoline alkaloid extracted from Coptidis rhizoma, has many biological activities such as antidiabetic, antimicrobial and antiviral actions. However, whether coptisine exerts anti-cancer metastasis effects remains unknown. Materials and Methods: Effects of coptisine on highly metastatic human breast cancer cell MDA-MB-231 proliferation were evaluated by trypan blue assay and on cell adhesion, migration and invasion by gelatin adhesion, wound-healing and matrigel invasion chamber assays, respectively. Expression of two matrix metalloproteinases (MMPs), MMP-9, MMP-2 and their specific inhibitors tissue inhibitor of metalloproteinase 1 (TIMP-1) and tissue inhibitor of metalloproteinase 2 (TIMP-2) were analyzed by RT-PCR. Results: Coptisine obviously inhibited adhesion to an ECM-coated substrate, wound healing migration, and invasion through the matrigel in MDA-MB-231 breast cancer cells. RT-PCR revealed that coptisine reduced the expression of the ECM degradation-associated gene MMP-9 at the mRNA level, and the expression of TIMP-1 was upregulated in MDA-MB-231 cells, while the expression of MMP-2 and its specific inhibitor TIMP-2 was not affected. Conclusions: Taken together, our data showed that coptisine suppressed adhesion, migration and invasion of MDA-MB-231 breast cancer cells in vitro, the down-regulation of MMP-9 in combination with the increase of TIMP-1 possibly contributing to the anti-metastatic function. Coptisine might be a potential drug candidate for breast cancer therapy.

Beta-Catenin Downregulation Contributes to Epidermal Growth Factor-induced Migration and Invasion of MDAMB231 Cells

  • Kwon, Arang;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.161-169
    • /
    • 2018
  • We previously demonstrated that epidermal growth factor (EGF) enhances cell migration and invasion of breast cancer cells in a SMAD ubiquitination regulatory factor 1 (SMURF1)-dependent manner and that SMURF1 induces degradation of ${\beta}-catenin$ in C2C12 cells. However, the relationship between EGF-induced SMURF1 and ${\beta}-catenin$ expression in breast cancer cells remains unclear. So, we investigated if EGF and SMURF1 regulate ${\beta}-catenin$ expression in MDAMB231 human breast cancer cells. When MDAMB231 cells were incubated with EGF for 24, 48, and 72 hours, EGF significantly increased expression levels of SMURF1 mRNA and protein while suppressing expression levels of ${\beta}-catenin$ mRNA and protein. Overexpression of SMURF1 downregulated ${\beta}-catenin$ mRNA and protein, whereas knockdown of SMURF1 increased ${\beta}-catenin$ expression and blocked EGF-induced ${\beta}-catenin$ downregulation. Knockdown of ${\beta}-catenin$ enhanced cell migration and invasion of MDAMB231 cells, while ${\beta}-catenin$ overexpression suppressed EGF-induced cell migration and invasion. Furthermore, knockdown of ${\beta}-catenin$ enhanced vimentin expression and decreased cytokeratin expression, whereas ${\beta}-catenin$ overexpression decreased vimentin expression and increased cytokeratin expression. These results suggest that EGF downregulates ${\beta}-catenin$ in a SMURF1-dependent manner and that ${\beta}-catenin$ downregulation contributes to EGF-induced cell migration and invasion in MDAMB breast cancer cells.

Inhibitory effect of Erythronium japonicum on the human breast cancer cell metastasis

  • You, Mi-Kyoung;Kim, Min-Sook;Rhyu, Jin;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, the inhibitory effect of Erythronium japonicum extracts on the metastasis of MDA-MB-231 human breast cancer cell line was determined. MATERIALS/METHODS: Cells were cultured with DMSO or with 50, 75, 100 or $250{\mu}g/ml$ of Erythronium japonicum methanol or ethanol extract. RESULTS: Both methanol and ethanol extracts significantly inhibited the growth and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. Erythronium japonicum extracts inhibited the adhesion of MDA-MB-231 cells. The invasion of breast cancer cells was suppressed by Erythronium japonicum extracts in a dose-dependent manner. The motility and MMP-2 and MMP-9 activities were also inhibited by both methanol and ethanol extracts. CONCLUSIONS: Our results collectively indicate that Erythronium japonicum extracts inhibit the growth, adhesion, migration and invasion as well as induce the apoptosis of human breast cancer cells. Clinical application of Erythronium japonicum as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

Inhibitory Effects of Harmine on Migration and Invasion of Human Breast Cancer Cells by Regulating Notch Signaling (Harmine의 Notch 신호전달 조절에 의한 유방암세포주 이동 및 침윤 억제 효과)

  • Yun, Jieun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.285-290
    • /
    • 2018
  • Harmine, a beta-carboline alkaloid isolated from the seeds of Peganum harmala has been reported as a promising drug candidate for cancer therapy. However, the effect of harmine on breast cancer remains still unclear. In this study, the effect of harmine on the cell proliferation, migration, and invasion of breast cancer MDA-MB231 cells and the underlying mechanism were investigated. The results indicated that harmine inhibited the proliferation MDA-MB231 cells in a dose-dependent manner and markedly suppressed migration and invasion of MDA-MB231 cells. The mechanism involved in part through Notch signaling. The Notch activity was significantly inhibited by harmine treatment and harmine suppressed the expression of Jagged1 which is a key ligand to activate Notch signaling. These findings suggest a novel mechanism of harmine on anti-cancer activity and harmine may act as a potential therapeutic drug for breast cancer treatment.

Effect of Cyanidin on Cell Motility and Invasion in MDA-MB-231 Human Breast Cancer Cells (Anthocyanin계 성분인 Cyanidin이 인체 유방암세포 MDA-MB-231의 이동성과 침윤성에 미치는 영향)

  • Chu, Su-Kyoung;Seo, Eun -Young;Kim, Woo-Kyoung;Kang, Nam-E
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.711-717
    • /
    • 2008
  • Anthocyanidins, the aglycones of anthocyanins, are natural colorants belonging to the flavonoid family. Cyanidin is one of the anthocyanidins, used for their antioxidant properties. Furthermore, previous studies have shown anthocyanidin-rich material extracts or aglycone form inhibit growth and induce apoptosis of cancer cells. But, Tumor metastasis is the most important cause of cancer death, and various treatment strategies have targeted on preventing the occurrence of metastasis. This study investigated the effects of cyanidin on metastasis processes, including motility, invasion and activity of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines. We cultured MDA-MB-231 cells in presence of various concentrations 0, 5, 10 and 20 ${\mu}M$ of cyanidin. The cell motility was significantly decreased dosedependently in cells treated with cyanidin (p < 0.05) and cyanidin treatment caused the significant suppression of the invasion (p < 0.05). MMP-2 and MMP-9 activities, and MMP-9 mRNA express were not affected by anthocyanin treatment. In conclusion, cyanidin inhibits cell motility, invasion in MDA-MB-231 human breast cancer cell lines.