Browse > Article
http://dx.doi.org/10.11620/IJOB.2018.43.3.161

Beta-Catenin Downregulation Contributes to Epidermal Growth Factor-induced Migration and Invasion of MDAMB231 Cells  

Kwon, Arang (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Park, Hyun-Jung (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Baek, Jeong-Hwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Publication Information
International Journal of Oral Biology / v.43, no.3, 2018 , pp. 161-169 More about this Journal
Abstract
We previously demonstrated that epidermal growth factor (EGF) enhances cell migration and invasion of breast cancer cells in a SMAD ubiquitination regulatory factor 1 (SMURF1)-dependent manner and that SMURF1 induces degradation of ${\beta}-catenin$ in C2C12 cells. However, the relationship between EGF-induced SMURF1 and ${\beta}-catenin$ expression in breast cancer cells remains unclear. So, we investigated if EGF and SMURF1 regulate ${\beta}-catenin$ expression in MDAMB231 human breast cancer cells. When MDAMB231 cells were incubated with EGF for 24, 48, and 72 hours, EGF significantly increased expression levels of SMURF1 mRNA and protein while suppressing expression levels of ${\beta}-catenin$ mRNA and protein. Overexpression of SMURF1 downregulated ${\beta}-catenin$ mRNA and protein, whereas knockdown of SMURF1 increased ${\beta}-catenin$ expression and blocked EGF-induced ${\beta}-catenin$ downregulation. Knockdown of ${\beta}-catenin$ enhanced cell migration and invasion of MDAMB231 cells, while ${\beta}-catenin$ overexpression suppressed EGF-induced cell migration and invasion. Furthermore, knockdown of ${\beta}-catenin$ enhanced vimentin expression and decreased cytokeratin expression, whereas ${\beta}-catenin$ overexpression decreased vimentin expression and increased cytokeratin expression. These results suggest that EGF downregulates ${\beta}-catenin$ in a SMURF1-dependent manner and that ${\beta}-catenin$ downregulation contributes to EGF-induced cell migration and invasion in MDAMB breast cancer cells.
Keywords
beta-catenin; epidermal growth factor; SMURF1; migration; invasion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li H, Xiao N, Wang Y, Wang R, Chen Y, Pan W, Liu D, Li S, Sun J, Zhang K, Sun Y, Ge X. Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIgamma. Oncogene. 2017;36:5668-5680. doi:10.1038/onc.2017.166.   DOI
2 Wang X, Jin C, Tang Y, Tang LY, Zhang YE. Ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) by Smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem. 2013;288:21784-21792. doi:10.1074/jbc.M113.472704.   DOI
3 Shen W, Pang H, Liu J, Zhou J, Zhang F, Liu L, Ma N, Zhang N, Zhang H, Liu L. Epithelial-mesenchymal transition contributes to docetaxel resistance in human non-small cell lung cancer. Oncol Res. 2014;22:47-55. doi:10.3727/096504014X14098532393473.   DOI
4 Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22:234-249. doi:10.1016/j.semcancer. 2012.03.006.   DOI
5 Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559-1564. doi:10.1126/science.1203543.   DOI
6 Masoud V, Pages G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol. 2017;8:120-134. doi:10.5306/wjco.v8.i2.120.   DOI
7 Kwon A, Lee HL, Woo KM, Ryoo HM, Baek JH. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cells. 2013;36:548-555. doi:10.1007/s10059-013-0233-4.   DOI
8 Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M et al. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget. 2014;5:4603-4650. doi:10.18632/oncotarget.2209.
9 Radisky DC. Epithelial-mesenchymal transition. J Cell Sci. 2005;118:4325-4326. doi:10.1242/jcs.02552.   DOI
10 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112: 1776-1784. doi:10.1172/JCI20530.   DOI
11 Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH. Talin phosphorylation by Cdk5 regulates Smurf1- mediated talin head ubiquitylation and cell migration. Nat Cell Biol. 2009;11:624-630. doi:10.1038/ncb1868.   DOI
12 Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD, Pollack JR. SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One. 2011;6:e23924. doi:10.1371/journal.pone.0023924.   DOI
13 Schwamborn JC, Muller M, Becker AH, Puschel AW. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 2007;26:1410-1422. doi:10.1038/sj.emboj.7601580.   DOI
14 Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003;302:1775-1779. doi:10.1126/science.1090772.   DOI
15 Jin C, Yang YA, Anver MR, Morris N, Wang X, Zhang YE. Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 2009;69:735-740. doi:10.1158/0008-5472.CAN-08-1463.   DOI
16 Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398: 422-426. doi:10.1038/18884.   DOI
17 Sahai E, Garcia-Medina R, Pouyssegur J, Vial E. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol. 2007;176:35-42. doi:10.1083/jcb.200605135.   DOI
18 Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, Sakuma R, Luga V, Roncari L, Attisano L, Wrana JL. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell. 2009;137:295-307. doi:10.1016/j.cell.2009.02.025.   DOI
19 Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol. 1999;155:703-710.   DOI
20 Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883-2891. doi:10.1038/sj.onc.1202627.   DOI
21 Yun KJ, Han WC, Choi SC, Kim TH. Immunohistochemical Study of beta-catenin Expression between Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Res Treat. 2002;34:117-121. doi:10.4143/crt.2002.34.2.117.   DOI
22 Ghadimi BM, Behrens J, Hoffmann I, Haensch W, Birchmeier W, Schlag PM. Immunohistological analysis of E-cadherin, alpha-, beta- and gamma-catenin expression in colorectal cancer: implications for cell adhesion and signaling. Eur J Cancer. 1999;35:60-65.   DOI
23 Boonanantanasarn K, Lee HL, Baek K, Woo KM, Ryoo HM, Baek JH, Kim GS. EGF Inhibits Wnt/beta-Catenin-Induced Osteoblast Differentiation by Promoting beta-Catenin Degradation. J Cell Biochem. 2015;116:2849-2857. doi:10.1002/jcb.25231.   DOI
24 Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol. 1994;127: 1375-1380.   DOI
25 Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet. 1987;1:1398-1402.
26 Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183-232.   DOI
27 Menard S, Balsari A, Casalini P, Tagliabue E, Campiglio M, Bufalino R, Cascinelli N. HER-2-positive breast carcinomas as a particular subset with peculiar clinical behaviors. Clin Cancer Res. 2002;8:520-525.
28 Jarrard DF, Blitz BF, Smith RC, Patai BL, Rukstalis DB. Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate. 1994;24:46-53.   DOI
29 Ribeiro FA, Noguti J, Oshima CT, Ribeiro DA. Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res. 2014;34:1547-1552.
30 Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem. 1999;274:36734-36740.   DOI
31 Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282:11221-11229. doi:10.1074/jbc.M611871200.   DOI
32 Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem. 1998;273:9078-9084.   DOI