Inhibitory Effects of Harmine on Migration and Invasion of Human Breast Cancer Cells by Regulating Notch Signaling

Harmine의 Notch 신호전달 조절에 의한 유방암세포주 이동 및 침윤 억제 효과

  • Yun, Jieun (Department of Pharmaceutical Engineering, Cheongju University)
  • 윤지은 (청주대학교 이공대학 제약공학과)
  • Received : 2018.10.29
  • Accepted : 2018.11.26
  • Published : 2018.12.31

Abstract

Harmine, a beta-carboline alkaloid isolated from the seeds of Peganum harmala has been reported as a promising drug candidate for cancer therapy. However, the effect of harmine on breast cancer remains still unclear. In this study, the effect of harmine on the cell proliferation, migration, and invasion of breast cancer MDA-MB231 cells and the underlying mechanism were investigated. The results indicated that harmine inhibited the proliferation MDA-MB231 cells in a dose-dependent manner and markedly suppressed migration and invasion of MDA-MB231 cells. The mechanism involved in part through Notch signaling. The Notch activity was significantly inhibited by harmine treatment and harmine suppressed the expression of Jagged1 which is a key ligand to activate Notch signaling. These findings suggest a novel mechanism of harmine on anti-cancer activity and harmine may act as a potential therapeutic drug for breast cancer treatment.

Keywords

References

  1. Siegel, R. L., Miller, K. D. and Jemal, A. (2017) Cancer statistics. CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
  2. Scully, O. J., Bay, B. -H., Yip, G. and Yu, Y. (2012) Breast cancer metastasis. Cancer Genomics and Proteomics 9: 311-320.
  3. Massague, J. (2007) Sorting out breast-cancer gene signatures. N. Engl. J. Med. 356: 294-297. https://doi.org/10.1056/NEJMe068292
  4. Geng, X., Ren, Y., Wang, F., Tian, D., Yao, X., Zhang, Y. and Tang, J. (2018) Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem. Biophys. Res. Commun. 498: 99-104. https://doi.org/10.1016/j.bbrc.2018.02.205
  5. Gao, J., Zhu, H., Wan, H., Zou, X., Ma, X. and Gao, G. (2017) Harmine suppresses the proliferation and migration of human ovarian cancer cells through inhibiting ERK/CREB pathway Oncol. Rep. 38: 2927-2934. https://doi.org/10.3892/or.2017.5952
  6. Yu, X. J., Sun, K., Tang, X. H., Zhou, C. J., Sun, H., Yan, Z., Fang, L., Wu, H. W., Xie, Y. K. and Gu, B. (2016) Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol. Lett. 12: 983-988. https://doi.org/10.3892/ol.2016.4696
  7. Ruan, S., Jia, F. and Li, J. (2017) Potential antitumor effect of harmine in the treatment of thyroid cancer. Evid. Based Complement Alternat. Med. 2017: 9402615.
  8. Yochum, Z. A., Cades, J., Mazzacurati, L., Neumann, N. M., Khetarpal, S. K., Chatterjee, S., Wang, H., Attar, M. A., Huang, E. H., Chatley, S. N., Nugent, K., Somasundaram, A., Engh, J. A., Ewald, A. J., Cho, Y. J., Rudin, C. M., Tran, P. T. and Burns, T. F. (2017) A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Mol. Cancer Res. 15: 1764-1776. https://doi.org/10.1158/1541-7786.MCR-17-0298
  9. Hashemi Sheikh Shabani, S., Seyed Hasan Tehrani, S., Rabiei, Z., Tahmasebi Enferadi, S. and Vannozzi, G. P. (2015) Peganum harmala L.'s anti-growth effect on a breast cancer cell line. Biotechnol. Rep. (Amst) 8: 138-143. https://doi.org/10.1016/j.btre.2015.08.007
  10. Daoud, A., Song, J., Xiao, F. and Shang, J. (2014) B-9-3, a novel ${\beta}$-carboline derivative exhibits anti-cancer activity via induction of apoptosis and inhibition of cell migration in vitro. Eur. J. Pharmacol. 724:219-230. https://doi.org/10.1016/j.ejphar.2013.12.038
  11. Borggrefe, T. and Oswald, F. (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol. Life Sci. 66: 1631-1646. https://doi.org/10.1007/s00018-009-8668-7
  12. Miele, L. (2016) Notch signaling. Clinical Cancer Research 12: 1074-1079.
  13. Armstrong, F., Brunet de la Grange, P., Gerby, B., Rouyez, M. C., Calvo, J., Fontenay, M., Boissel, N., Dombret, H., Baruchel A., Landman-Parker, J., Romeo, P. H., Ballerini, P. and Pflumio, F. (2009) NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113: 1730-1740. https://doi.org/10.1182/blood-2008-02-138172
  14. Garcia, A. and Kandel, J. J. (2012) Notch: A key regulator of tumor angiogenesis and metastasis. Histol. Histopathol. 27: 151-156.
  15. Shah, D., Wyatt, D., Baker, A. T., Simms, P., Peiffer, D. S., Fernandez, M., Rakha, E., Green, A., Filipovic, A., Miele, L. and Osipo, C. (2018) Inhibition of HER2 increases JAGGED1-dependent breast cancer stem cells: role for membrane JAGGED1. Clin. Cancer Res. 24: 4566-4578. https://doi.org/10.1158/1078-0432.CCR-17-1952
  16. Sethi, N., Dai, X., Winter, C. G. and Kang, Y. (2011) Tumorderived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19: 192-205. https://doi.org/10.1016/j.ccr.2010.12.022
  17. Espinoza, I. and Miele, L. (2013) Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341: 41-45. https://doi.org/10.1016/j.canlet.2013.08.027
  18. Espinoza, I., Pochampally, R., Xing, F., Watabe, K. and Miele, L. (2013) Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco. Targets Ther. 6: 1249-1259.
  19. Shao, S., Zhao, X., Zhang, X., Luo, M., Zuo, X., Huang, S., Wang, Y., Gu, S. and Zhao X. (2015) Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol. Cancer 14: 28. https://doi.org/10.1186/s12943-015-0295-3