• Title/Summary/Keyword: Breast cancer MCF-7 cell

Search Result 436, Processing Time 0.03 seconds

The Estrogenic Effects of Phthalates (DEHP, DBP) in MCF-7 Cell (유방암세포인 MCF-7세포를 이용한 DEHP, DBP의 에스트로젠 효과)

  • Lee, Su-Youn;Kim, So-Jung;Lee, Seung-Ho;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Choi, Chang-Sun;Yoon, Seong-Il;Kim, Jong-Suk;Jung, Ji-Won;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.209-212
    • /
    • 2007
  • To evaluate the estrogenic activities of di-ethyl hexyl phthalate (DEHP) and di-butyl phthalate (DBP), two phthalates known as endocrine disrupters, we used MCF-7 human breast cancer cell line. As results, DBP and DEHP had estrogenic effects. In brief, the concentration of maximal MCF-7 cell proliferation was $10^{-7}M\;and\;10^{-8}M$ for DEHP and DBP, respectively. The ratio of maximal cell yield of the test compounds to that of $17{\beta}-estradiol$ was 87.5% for DEHP and 73.4% for DBP. In summary, both DEHP and DBP had cell proliferation potencies in the MCF-7 cell. Potencies ranged from approximately 10 to 100 times less than 17beta-estradiol. DBP was stronger than DEHP in the concentration of maximal efficacy. However, DEHP was stronger than DBP in the MCF-7 cell proliferation. Results from this study suggested that DEHP and DBP may play an important role in the estrogenic activity. Therefore, it is suggested that DEHP and DBP are estrogenic.

Anticancer Activities of the Methanolic Extract from Lemon Leaves in Human Breast Cancer Stem Cells (인간 유방암 줄기세포에서 레몬잎 메탄올 추출물의 항암 효능)

  • Moon, Jeong Yong;Nguyen, Linh Thi Thao;Hyun, Ho Bong;Osman, Ahmed;Cho, Minwhan;Han, Suyeong;Lee, Dong-Sun;Ahn, Kwang Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • The anticancer activity of a methanolic extract from lemon leaves (MLL) was assessed in MCF-7-SC human breast cancer stem cells. MLL induced apoptosis in MCF-7-SC, as evidenced by increased apoptotic body formation, sub-G1 cell population, annexin V-positive cells, Bax/Bcl-2 ratio, as well as proteolytic activation of caspase-9 and caspase-3, and degradation of poly (ADP-ribose) polymerase (PARP) protein. Concomitantly, MLL induced the formation of acidic vesicular organelles, increased LC3-II accumulation, and reduced the activation of Akt, mTOR, and p70S6K, suggesting that MLL initiates an autophagic progression in MCF-7-SC via the Akt/mTOR pathway. Epithelial-mesenchymal transition (EMT), a critical step in the acquisition of the metastatic state, is an attractive target for therapeutic interventions directed against tumor metastasis. At low concentrations, MLL induced anti-metastatic effects on MCF-7-SC by inhibiting the EMT process. Exposure to MLL also led to an increase in the epithelial marker E-cadherin, but decreased protein levels of the mesenchymal markers Snail and Slug. Collectively, this study provides evidence that lemon leaves possess cytotoxicity and anti-metastatic properties. Therefore, MLL may prove to be beneficial as a medicinal plant for alternative novel anticancer drugs and nutraceutical products.

Combination of Curcumin and Paclitaxel-loaded Solid Lipid Nanoparticles to Overcome Multidrug Resistance

  • Li, Rihua;Xu, Wenting;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.381-386
    • /
    • 2011
  • Multi-drug resistance (MDR) has been known as a major hurdle in cancer chemotherapy. One of the most clinically significant causes of MDR was the efflux of anticancer agents mediated by p-glycoprotein (p-gp) over-expressed in MDR cancer cells. To overcome MDR, there have been several strategies such as co-administration with p-gp inhibitors and encapsulation of anticancer drugs into drug delivery systems. In the present study, curcumin was evaluated for its potential as p-gp inhibitor and MDR reversal activity when combined with paclitaxel incorporated into lipid nanoparticles (PTX/LN). Western blot assay showed curcumin did not modulate the level of p-gp expression in MCF-7/ADR which is a MDR variant of human breast cancer cell line, MCF-7, and over-expresses p-gp. However, curcumin inhibited p-gp-mediated efflux of calcein in a dose-dependent manner even though it showed lower activity compared to verapamil, a well-known p-gp inhibitor. Incorporation of paclitaxel into lipid nanoparticles partially recovered the anticancer activity of paclitaxel in MCF-7/ADR. The combined use of curcumin and PTX/LN exhibited further full reversal of MDR, suggesting susceptibility of PTX/LN to the efflux system. In conclusion, combined approach of using p-gp inhibitors and incorporation of the anticancer agents into nano-delivery systems would be an efficient strategy to overcome MDR.

Taxol Produced from Endophytic Fungi Induces Apoptosis in Human Breast, Cervical and Ovarian Cancer Cells

  • Wang, Xin;Wang, Chao;Sun, Yu-Ting;Sun, Chuan-Zhen;Zhang, Yue;Wang, Xiao-Hua;Zhao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.125-131
    • /
    • 2015
  • Currently, taxol is mainly extracted from the bark of yews; however, this method can not meet its increasing demand on the market because yews grow very slowly and are a rare and endangered species belonging to first-level conservation plants. Recently, increasing efforts have been made to develop alternative means of taxol production; microbe fermentation would be a very promising method to increase the production scale of taxol. To determine the activities of the taxol extracted from endophytic fungus N. sylviforme HDFS4-26 in inhibiting the growth and causing the apoptosis of cancer cells, on comparison with the taxol extracted from the bark of yew, we used cellular morphology, cell counting kit (CCK-8) assay, staining (HO33258/PI and Giemsa), DNA agarose gel electrophoresis and flow cytometry (FCM) analyses to determine the apoptosis status of breast cancer MCF-7 cells, cervical cancer HeLa cells and ovarian cancer HO8910 cells. Our results showed that the fungal taxol inhibited the growth of MCF-7, HeLa and HO8910 cells in a dose-and time-dependent manner. IC50 values of fungal taxol for HeLa, MCF-7 and HO8910 cells were $0.1-1.0{\mu}g/ml$, $0.001-0.01{\mu}g/ml$ and $0.01-0.1{\mu}g/ml$, respectively. The fungal taxol induced these tumor cells to undergo apoptosis with typical apoptotic characteristics, including morphological changes for chromatin condensation, chromatin crescent formation, nucleus fragmentation, apoptotic body formation and G2/M cell cycle arrest. The fungal taxol at the $0.01-1.0{\mu}g/ml$ had significant effects of inducing apoptosis between 24-48 h, which was the same as that of taxol extracted from yews. This study offers important information and a new resource for the production of an important anticancer drug by endofungus fermentation.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

Antimutagenicity and Cytotoxicity of Artemisia iwayomogi Kitamura Extracts (더위지기 추출물의 항돌연변이원성 및 세포독성효과)

  • 함승시;정차권;이재훈;최근표;정성원;김은정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.157-162
    • /
    • 1998
  • The antimutagenic activity of three kinds of extract such as fresh juice, ethanol extract and water extract of Artemisia iwayomogi against 3 - amino - 1, 4 - dimethyl - 5H - pyrido [4,3-b] indol (Trp-P-1) and N - methyl - N' - nitro - N -nitrosoguanidine(MNNG) was demonstrated with the Salmonella typhimurium assay. The number of revertants per plate decreased significantly when these extracts(0.5ug/plate) added to the assay system system using S. typhimurium TA 100. These extracts also showed prominant cytotoxic activity against four different kinds of human cancer cell as human lung cancer cell (A549), breast cancer cell(MCF7), fibrosacoma cell(HT1080) and gastric cancer cell(KATOIII), respectively.

  • PDF

Study for the Synthesis of $[^{123}I]$Idoxifene and Its Uptake in the Breast Cancer Cell ($[^{123}I]$Idoxifene 합성과 유방암의 세포섭취에 관한 연구)

  • Cho, Young-Sub;Yang, Seung-Dae;Suh, Yong-Sup;Chun, Kwon-Soo;Ahn, Soon-Hyuk;Lim, Soo-Jung;Lim, Sang-Moo;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.410-417
    • /
    • 2000
  • Purpose: Idoxifene is currently entering phase II clinical trials for the treatment of advanced breast cancer. The radiolabeled idoxifene using $[^{123}I]$ provides an opportunity for clinical pharmacology with single photon emission computed tomography (SPECT). The purpose of this study was to prepare radiolabeled idoxifene using $[^{123}I]$ and to determine its cell uptake of breast cancer cell line. Materials and Methods: With a view to evaluating new anticancer drugs, we are investigating the novel antiestrogen pyrrolidino-4-iodotamoxifen (idoxifene). $[^{123}I]$Idoxifene has been prepared in no-carrier-added form using a tributyl stannylated precursor which has been synthesized by means of (2-chloroethoxy)benzene with (${\pm}$)-2-phenylbutanoic acid on the basis of previously reported standard methods. The biodistribution and dynamic behavior of the compound were investigated using the comparative breast cancer cell line, MCF-7 (estrogen receptor-positive) and MDA-MB-468 (non-estrogen receptor). Results and Conclusion: Acylation of (2-chloroethoxy)benzene with (${\pm}$)-2-phenylbutanoic acid gave the versatile ketone (81%) which reacted with 1,4-diiodobenzene to give triphenylethylene as a mixture of E and Z geometric isomers, which were separated by the recrystallization in ethanol. The E-isomer was treated with pyrrolidine to give idoxifene (67%). In order to incorporate radioactive iodine into the 4-position, the 4-stannylated precursor was prepared (30%). The yield of radioiodination was 90-92% with a high radiochemical purity greater than 98%. The ratio of tumor uptake of the breast cancer cell line between MCF-7 and MDA-MB-468 was about 1.7.

  • PDF

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.