Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.235

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1  

Maharjan, Sony (Center for Medical Science Research, College of Medicine, Hallym University)
Park, Byoung Kwon (Center for Medical Science Research, College of Medicine, Hallym University)
Lee, Su In (Center for Medical Science Research, College of Medicine, Hallym University)
Lim, Yoonho (Division of Bioscience and Biotechnology, BMIC, Konkuk University)
Lee, Keunwook (Department of Biomedical Science, College of Natural Science, Hallym University)
Kwon, Hyung-Joo (Center for Medical Science Research, College of Medicine, Hallym University)
Publication Information
Biomolecules & Therapeutics / v.26, no.3, 2018 , pp. 322-327 More about this Journal
Abstract
A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.
Keywords
AKT; Cell cycle; Cell proliferation; Cyclin D1; Gomisin G; Triple negative breast cancer;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Caputi, M., Groeger, A. M., Esposito, V., Dean, C., De Luca, A., Pacilio, C., Muller, M. R., Giordano, G. G., Baldi, F., Wolner, E. and Giordano, A. (1999) Prognostic role of cyclin D1 in lung cancer. Relationship to proliferating cell nuclear antigen. Am. J. Respir. Cell. Mol. Biol. 20, 746-750.   DOI
2 Casimiro, M. C., Crosariol, M., Loro, E., Li, Z. and Pestell, R. G. (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3, 649-657.   DOI
3 Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and McCubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603.   DOI
4 Chavez, K. J., Garimella, S. V. and Lipkowitz, S. (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 32, 35-48.
5 Chen, D. F., Zhang, S. X., Xie, L., Xie, J. X., Chen, K., Kashiwada, Y., Zhou, B. N., Wang, P., Cosentino, L. M. and Lee, K. H. (1997) Anti-AIDS agents--XXVI. Structure-activity correlations of gomisin- G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg. Med. Chem. 5, 1715-1723.   DOI
6 Choi, Y. W., Takamatsu, S., Khan, S. I., Srinivas, P. V., Ferreira, D., Zhao, J. and Khan, I. A. (2006) Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J. Nat. Prod. 69, 356-359.   DOI
7 Collignon, J., Lousberg, L., Schroeder, H. and Jerusalem, G. (2016) Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med. Press) 8, 93-107.
8 Criscitiello, C., Azim, H. A., Jr., Schouten, P. C., Linn, S. C. and Sotiriou, C. (2012) Understanding the biology of triple-negative breast cancer. Ann. Oncol. 23 Suppl 6, vi13-vi18.   DOI
9 Oh, S. Y., Kim, Y. H., Bae, D. S., Um, B. H., Pan, C. H., Kim, C. Y., Lee, H. J. and Lee, J. K. (2010) Anti-inflammatory effects of gomisin N, gomisin J, and schisandrin C isolated from the fruit of Schisandra chinensis. Biosci. Biotechnol. Biochem. 74, 285-291.   DOI
10 Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. and Sutherland, R. L. (2011) Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11, 558-572.   DOI
11 Opletal, L., Sovova, H. and Bartlova, M. (2004) Dibenzo[a,c]cyclooctadiene lignans of the genus Schisandra: importance, isolation and determination. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 812, 357-371.   DOI
12 Otto, T. and Sicinski, P. (2017) Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 17, 93-115.   DOI
13 Pareja, F., Geyer, F. C., Marchio, C., Burke, K. A., Weigelt, B. and Reis- Filho, J. S. (2016) Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2, 16036.   DOI
14 Park, H. J., Lee, S. J., Song, Y., Jang, S. H., Ko, Y. G., Kang, S. N., Chung, B. Y., Kim, H. D., Kim, G. S. and Cho, J. H. (2014) Schisandra chinensis prevents alcohol-induced fatty liver disease in rats. J. Med. Food 17, 103-110.   DOI
15 Qie, S. and Diehl, J. A. (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 94, 1313-1326.   DOI
16 Robinson, T. J., Liu, J. C., Vizeacoumar, F., Sun, T., Maclean, N., Egan, S. E., Schimmer, A. D., Datti, A. and Zacksenhaus, E. (2013) RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS ONE 8, e78641.   DOI
17 Arcaro, A. and Guerreiro, A. S. (2007) The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr. Genomics 8, 271-306.   DOI
18 Alao, J. P. (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer 6, 24.
19 Altomare, D. A. and Testa, J. R. (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455-7464.   DOI
20 Anders, C. K. and Carey, L. A. (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin. Breast Cancer 9 Suppl 2, S73-S81.   DOI
21 Bartkova, J., Lukas, J., Muller, H., Lutzhoft, D., Strauss, M. and Bartek, J. (1994) Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57, 353-361.   DOI
22 Kim, E. J., Kang, J. I., Tung, N. H., Kim, Y. H., Hyun, J. W., Koh, Y. S., Chang, W. Y., Yoo, E. S. and Kang, H. K. (2016) The effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from lobophyyum sp. on the apoptosis induction of SNU-C5 human colorectal cancer cells. Biomol. Ther. (Seoul) 24, 623-629.   DOI
23 Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., Brenner, H. et al. (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3, 524-548.   DOI
24 Foulkes, W. D., Smith, I. E. and Reis-Filho, J. S. (2010) Triple-negative breast cancer. N. Engl. J. Med. 363, 1938-1948.   DOI
25 Hutchinson, L. (2010) Breast cancer: challenges, controversies, breakthroughs. Nat. Rev. Clin. Oncol. 7, 669-670.   DOI
26 Jang, M. K., Yun, Y. R., Kim, J. H., Park, M. H. and Jung, M. H. (2017) Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci. Rep. 7, 40345.   DOI
27 Kang, J. I., Hong, J. Y., Choi, J. S. and Lee, S. K. (2016) Columbianadin inhibits cell proliferation by inducing apoptosis and necroptosis in HCT116 colon cancer cells. Biomol. Ther. (Seoul) 24, 320-327.   DOI
28 Min, H. Y., Park, E. J., Hong, J. Y., Kang, Y. J., Kim, S. J., Chung, H. J., Woo, E. R., Hung, T. M., Youn, U. J., Kim, Y. S., Kang, S. S., Bae, K. and Lee, S. K. (2008) Antiproliferative effects of dibenzocyclooctadiene lignans isolated from Schisandra chinensis in human cancer cells. Bioorg. Med. Chem. Lett. 18, 523-526.   DOI
29 Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., Lickley, L. A., Rawlinson, E., Sun, P. and Narod, S. A. (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429-4434.   DOI
30 Ryu, E. Y., Park, S. Y., Kim, S. G., Park, D. J., Kang, J. S., Kim, Y. H., Seetharaman, R., Choi, Y. W. and Lee, S. J. (2011) Anti-inflammatory effect of heme oxygenase-1 toward Porphyromonas gingivalis lipopolysaccharide in macrophages exposed to gomisins A, G, and J. J. Med. Food 14, 1519-1526.   DOI
31 VanArsdale, T., Boshoff, C., Arndt, K. T. and Abraham, R. T. (2015) Molecular Pathways: Targeting the Cyclin D-CDK4/6 Axis for Cancer Treatment. Clin. Cancer Res. 21, 2905-2910.   DOI
32 Xiaoyang, L., Chenming, N., Chengqing, L. and Tao, L. (2015) Drugdrug interation prediction between ketoconazole and anti-liver cancer drug Gomisin G. Afr. Health Sci. 15, 590-593.   DOI