• Title/Summary/Keyword: Breakdown field

Search Result 795, Processing Time 0.034 seconds

Electrical Breakdown Characteristics of LN2 under Simulated Quenching Conditions for Application of HTS Apparatus (고온초전도 기기응용을 위한 모의 \ulcorner치 환경에서 액체질소의 절연파괴 특성)

  • 백승명;정종만;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.985-990
    • /
    • 2002
  • The electrical breakdown characteristics of liquid nitrogen(LN$\sub$2/) were studied under simulated quenching conditions for application of HTS apparatus. The experimental results for various quenching condition revealed that the breakdown voltage of LN$\sub$2/ with bubble flow velocity and gap spacing. In the case, breakdown voltage decreases gradually with the bubble velocity. When it is bubble velocity from 0 to 1 $\ell$ /min, breakdown voltage rapidly decreases but decreases from 2 $\ell$/min to 10 $\ell$/min slowly. The breakdown voltage for vertical electrode arrangement is higher than that for horizontal electrode arrangement. Also, it did a electric field and potential distribution interpreting at the liquid nitrogen when the bubble existed. The plots of equipotential lines for three cases are also shown.

Dynamic Electrical Breakdown Characteristics of Liquid Nitrogen (액체 $N_2$의 동적 절연파괴 특성)

  • 김영석;정종만;곽민환;백승명;장현만;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.359-362
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen(LNd used as both coolant and insulator for high $T_c$ superconductor system is very important. This paper presents dynamic breakdown characteristics of liquid nitrogen by quench penomena of thermal bubble under high electric field. As the result, the breakdown mechanism of $LN_2$ depends on thermal bubble effect. The breakdown voltage decreases slightly with increasing heating. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement.

  • PDF

The Study for the Breakdown Characteristics of Interface between LSR-XLPE, EPDM-XLPE by the Interfacial Treatment Condition (LSR-XLPE, EPDM-XLPE 이종계면에서의 계면처리에 따른 절연파괴특성)

  • Cho, Han-Goo;Lee, Yu-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.460-461
    • /
    • 2007
  • In this paper, we studied the properties of a cable insulate capacity between surfaces with the variation of the interfacial breakdown. As a function of silicon oil, the variation of pressure and interfacial roughness were investigated. The insulate trouble of a power cable is out of the interfacial parts, which breakdown the insulate breakdown capacity in a power cable. In this study, the analysis of electric field and the phenomenon of interfacial breakdown were improved by increased interfacial pressure, decreased surface roughness, and oil. And It was shown that interfacial breakdown LSR-XLPE insulators is higher that of EPDM-XLPE.

  • PDF

Experimental study on the lightning impulse breakdown characteristics of air for the development of air-insulated high voltage apparatuses (고전압 전력기기 개발을 위한 기중 임펄스절연파괴특성에 관한 연구)

  • Kang, Hyoun-Gku;Kim, Joon-Yeon;Seok, Bok-Yeol;Kim, Dong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1473_1474
    • /
    • 2009
  • To develop electrically reliable high voltage apparatuses, the experimental study on the electrical breakdown field strength is needed, as well as theoretical approach. In this paper, lightning impulse breakdown characteristics considering utilization factors are investigated for the establishment of insulation design criteria of an high voltage apparatus. The utilization factors are represented as the ratio of mean electric field to maximum electric field. Dielectric experiments are performed by using five kinds of sphere-plane electrode systems made of stainless steel. As a result, it is found that dielectric characteristics are affected by not only gap length but also utilization factor of electrode systems. The results are expected to be applicable to the design of high voltage apparatuses.

  • PDF

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

Characteristics Of XeCl Excimer-Laser Annealed Insulator (XeCl EXCIMER-LASER 이용하여 열처리된 절연막의 특성 분석)

  • Park, C.M.;Yoo, J.S.;Choi, H.S.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1440-1442
    • /
    • 1996
  • The laser annealing effects on the TEOS (Tetra-Ethyl-Ortho-Silicate) oxide of MOS (Al/TEOS/n+ Silicon) structures was investigated with different initial oxide conditions, such as breakdown field. The breakdown field increased up to the 170 $mJ/cm^2$ with increasing laser energy density and decreased at 220 $mJ/cm^2$. It is considered that the increase of breakdown field is originated from the restore of strains which exist mainly at the metal/oxide interface.

  • PDF

Analytic Breakdown Voltage Model of LDMOS with Internal Field Ring (내부 전계 링을 갖는 LDMOS의 해석적 항복전압 모델)

  • 오동주;염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.377-380
    • /
    • 2003
  • An Analytic breakdown voltage model of LDMOS with internal field ring is proposed. The model is a simple analytic formula which has variables such as the dimension of drift retion, the position and doping concentration of the internal field ring, the thickness and permittivity of oxide. By comparing the results from two dimensional TCAD simulation, the proposed model explains the breakdown phenomena fairly well.

  • PDF

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

The Formation and Characteristics of Laser CVD SiON Films (Laser CVD에 의한 SiON막의 형성과 그 특성)

  • Kwon, Bong-Jae;Park, Jong-Wook;Cheon, Young-Il;Lee, Cheol-Jin;Park, Ji-Soon;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.241-244
    • /
    • 1991
  • In this paper, we introduced Silicon Oxynitride films deposited by Laser CVD, and evaluated the electrical breakdown of these films by TZDB(Time Zero Dielectric Breakdown) and TDDB(Time Dependent Dielectric Breakdown) test. In addition, high frequency C-V test was done in order to calculate hysterisis and flatband voltage(before and after electric field stress). Failure times against eletric field are examined and electric field accelation factor $\beta$ are obtained, and long term reliability was also described by extrapolating into life time in the operating voltage(5V). In this experiments, the deposited films with increased temperature represented small flatband voltage, hysterisis and favorable breakdown characteristics, this is why the hydrogen in the film was decreased and the film was densified, long term reliability was good in the laser CVD SiON films.

  • PDF

The Optimal Design of High Voltage Non Punch Through IGBT and Field Stop IGBT (고전압 Non Punch Through IGBT 및 Field Stop IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.214-217
    • /
    • 2017
  • An IGBT (insulated gate bipolar transistor) device has an excellent current-conducting capability. It has been widely employed as a switching device to use in power supplies, converters, solar inverters, and household appliances or the like, designed to handle high power. The aim with IGBT is to meet the requirements for use in ideal power semiconductor devices with a high breakdown voltage, an on-state voltage drop, a high switching speed, and high reliability for power-device applications. In general, the concentration of the drift region decreases when the breakdown voltage increases, but the on-resistance and other characteristics should be reduced to improve the breakdown voltage and on-state voltage drop characteristics by optimizing the design and structure changes. In this paper, using the T-CAD, we designed the NPT-IGBT (non punch-through IGBT) and FS-IGBT (field stop IGBT) and analyzed the electrical characteristics of those devices. Our analysis of the electrical characteristics showed that the FS-IGBT was superior to the NPT-IGBT in terms of the on-state voltage drop.