• Title/Summary/Keyword: Brassica pekinensis

Search Result 147, Processing Time 0.023 seconds

Inhibition Effects Against Plant Pathogenic Fungi and Plant Growth Promotion by Beneficial Microorganisms (유용 미생물을 활용한 식물 병원 곰팡이의 억제와 식물 생장촉진 효과)

  • Jung, Jin Hee;Kim, Sang Woo;Kim, Yun Seok;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.118-126
    • /
    • 2013
  • The experiment was carried out to analyze the inhibition effect of plant pathogenic fungi and growth promotion activity induced by the bacterial strains isolated from peatmoss. Among the isolated bacterial strains, B10-2, B10-4, B10-5 and B10-6 which showed more than 30% inhibition rate against Botrytis cinerea and Rhizoctonia solani in vitro, were further analyzed in the greenhouse for the growth promotion activity on lettuce (Lactuca sativa), pak-choi (Brassica compestris L. ssp. chinensis) and Chinese cabbage (Brassica campestris L. ssp. pekinensis). The results showed the treatment of B10-4 on lettuce showed the highest growth promotion activity with the leaf area ($169.17cm^2$), fresh weight (leaf: 40.29 g, root: 8.80 g)and dry weight (leaf: 11.24 g, root: 4.17 g), which was about two folds as compared to control. On pak-choi, the growth promotion rate was the highest with the leaf area of $112.87cm^2$, leaf fresh weight of 60.70 g, root fresh weight of 3.37 g, leaf dry weight of 14.34 g, and root dry weight of 1.90 g. As a result of treatment of B10-13 on chinese cabbage, the growth promotion rate was the highest with the leaf area ($293.56cm^2$), fresh weight (leaf: 113.67 g, root: 2.40 g) and dry weight (leaf: 6.03 g, root: 0.53 g). The production of Indole Acetic Acid (IAA) and Indole-3-Butylic Acid (IBA) were also analyzed in these bacterial isolates. The IAA and IBA analyses were carried out in all bacterial isolates each day within the 5 days of incubation period. The highest production of IAA was observed with $112.57{\mu}g/mg$ protein in B10-4 after 3 days of incubation and IBA production was the highest in B10-2 with $58.71{\mu}g/mg$ protein after 2 days of incubation. Also, phosphate solubilizing activity was expressed significantly in B10-13 in comparison to that of other bacterial isolates. Bacterial identification showed that B10-2 was Bacillaceae bacterium and B10-5 was Bacillus cereus, B10-4 and B10-6 were Bacillus sp. and B-13 was Staphylococcus sp. by ITS sequence.

Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage (배추에서 신규 염 저항성 관련 유전자 분리 및 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.748-755
    • /
    • 2013
  • This study was conducted to find a salt tolerance gene in Brassica rapa. In order to meet this objective, we analyzed data from a KBGP-24K oligo chip [BrEMD (Brassica rapa EST and microarray database)] of the B. rapa ssp. pekinensis 'Chiifu' under salt stress (250 mM NaCl). From the B. rapa KBGP-24K microarray chip analysis, 202 salt-responsive unigenes were primarily selected under salt stress. Of these, a gene with unknown function but known full-length sequence was chosen to closely investigate the gene function. The selected gene was named BrSSR (B. rapa salt stress resistance). BrSSR contains a 285 bp open reading frame encoding a putative 94-amino acid protein, and a DUF581 domain. The pSL94 vector was designed to over-express BrSSR, and was used to transform tobacco plants for salt tolerance analysis. T1 transgenic tobacco plants that over-expressed BrSSR were selected by PCR and DNA blot analyses. Quantitative real-time RT PCR revealed that the expression of BrSSR in transgenic tobacco plants increased by approximately 3.8-fold. Similar results were obtained by RNA blot analysis. Phenotypic characteristics analysis showed that transgenic tobacco plants with over-expressed BrSSR were more salt-tolerant than the wild type control under 250 mM NaCl for 5 days. Based on these results, we hypothesized that the over-expression of BrSSR may be closely related to the enhancement of salt tolerance.

Isolation and Culture of Protoplasts of Brassica Plants (십자화과 식물의 나출원형질체의 단리와 그 배양에 관한 연구)

  • Kim, Young Rae;Lee, Young Bok;Ham, In Ki;Park, Kyo Seon
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.157-167
    • /
    • 1986
  • The study was carried out to identify several factors affecting isolation and culture of cotyledone and leaf mesophyll protoplasts of cabbage (Brassica oleraceae), petsai (B.campestris subsp. pekinensis) and rape (B.napus). High viable protoplasts could be obtained when the cotyledon and the leaf mesophyll tissue of all species were treated with enzyme solution composed of 1% macerozyme 'R-10', 1.5% Onozuka 'R-10', 10% mannitol and 50,0 mM $CaCl_22H_2O$ for 4 hours. The protoplasts which obtained from the cotyledon of all species except the cabbage and the leaf mesophyll tissue of all species were divided on NN culture medium supplemented with 9.1% mannitol, 1% glucose, 1% sucrose, $1mg/{\ell}$ 2,4-D, $0.5mg/{\ell}$ NAA and $0.5mg/{\ell}$ BA. The division of the rape leaf mesophyll protoplasts were continued and led to colony.

  • PDF

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea (Proteomics를 이용한 고랭지 배추의 고온장해 해석)

  • Shin, Pyung-Gyun;Hong, Sung-Chang;Chang, An-Cheol;Kim, Sang-Hyo;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1649-1653
    • /
    • 2007
  • High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

Fertilizer Efficiency of the Garbage-based Compost in Cultivation of Leaf Vegetables (연약야채재배(軟弱野菜栽培)에 있어서 잔반퇴비(殘飯堆肥)의 효과적(效果的) 이용법(利用法))

  • Park, Bong Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 1996
  • The expriment was carried out to clarify the fertilizer efficiency of a garbage-based compost in cultivation of leaf vegitables. 1. Only application of 8 tons per 10 of the compost did not have any growth injury to "Osaka-shirona" (a cultivar of Brassica pekinensis L.) in a pot experiment 2. In four continuous cropping with application of 3 tons per 10 a of the compost before every seeding, "Osaka-shirona" grew satisfactorily. 3. Osaka-shirona, spinich and garland chrysanthemum were cultivated under a plastic house applied with 2 tons per a of each of the garbage-based compost and cattle manure, delayed release fertilizer and bark compost on the market. There was no difference of the vegetable yields among the applied field, as well as of the contents of ${\beta}$-carotene, vitamin C, Ca and Fe.

  • PDF

Effect of Urea and Ammonium Nitrate Application on the Use of Soil Born Potash and Yield of Chinese Cabbage (요소(尿素)와 질산(窒酸)암모늄(질안(窒安))의 시용(施用)이 토양가리(土壤加里)의 이용(利用) 및 배추의 수량(收量)에 준 영향(影響))

  • Oh, Wang-Keun;Kim, Seoung-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.63-66
    • /
    • 1985
  • A pot experiment was conducted to study the effect of urea and ammonium nitrate on the use of soil born potassium and the yield of chinese cabbage (Brassica pekinensis, Var. Heungnong, Seoul). Results obtained are shown as follows; 1. In comparison with urea, ammonium nitrate lowered soil pH and promoted the utility of soil born potash by chinese cabbage which resulted in the increase of the yield at no potash applied cultivation. 2. Ammonium nitrate seemed to be more effective than urea on the growth of the edible part of chinese cabbage (inner leaves of cabbage) and the effect was much promoted by the addition of potash. 3. The greater the yield of edible part of cabbage, the lower the N/K ratio of dry mater. The highest yield was obtained at N/K ratio of 1.4 in 1.2-1.3 m.e/g K range of the dried cabbage.

  • PDF

Characterization of the Gene Encoding Radish (Raphanus sativus L.) PG-inhibiting Protein

  • Hwang, Byung-Ho;Kim, Hun;Lim, Sooyeon;Han, NaRae;Kim, Jongkee
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.299-307
    • /
    • 2013
  • A radish (Raphanus sativus L.) polygalacturonase-inhibiting protein (PGIP) gene was cloned and compared to the PGIP gene (BrPGIP2) from Chinese cabbage (Brassica rapa ssp. pekinensis) in order to gain more information on controlling a disease and improving produce quality. To clone the radish PGIP gene, primers were designed based on conserved sequences of two PGIP genes (BnPGIP1 and BnPGIP2) from rape (B. napus L. ssp. oleifera), Chinese cabbage and Arabidopsis thaliana. PCR cloning was performed with cDNA from the stigma of radish 'Daejinyeoreum' as a template to confirm DNA fragments which were about 600 base pair in size. Sequence analysis revealed 84.1% homology with BrPGIP2 and 70.1% with BnPGIP1. DNA walking was conducted to confirm the open reading frame of 972 bp, and the gene was named RsPGIP1. RsPGIP1 consisting with 323 amino acids (aa) has a high leucine content (54/323) and contains 10 leucine-rich repeat domains, as do most BrPGIPs of Chinese cabbage. The gene expression of RsPGIP1 was induced by abiotic stresses and methyl jasmonate. It showed enrichment in the stigma and the primary root than a leaf. Cloning RsPGIP1 will aid to further apply practices on postharvest quality maintenance and disease control of the root.

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho;Hong, Sanghyun;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.

Effect of the Organic Fertilizer Mixed with Various Recycled Coir Substrates on Chinese Cabbage(Brassica Campestris Ssp. Pekinensis) and Lettuce(Lactuca Sativa) (폐코이어를 재활용한 혼합 유기질 비료가 배추와 상추의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Park, Eun-Ji;Park, Young-Hoon;Choi, Young-Whan;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1221-1231
    • /
    • 2015
  • The present study was conducted to find a way to recycle the coir substrate by investigating changes in its physical and chemical properties based on the number of use year. Specific gravity of unused coir substrate was $0.212g/cm^3$, while it was higher for the substrate used for 2 years. Porosity was different depending on the number of use year. The porosity of unused substrate was 51.9%, but it increased to 68.6% after used for 2 years. In general, physical and chemical properties were better in the coir substrate used for 2 years than in unused one. The number of leaves, leaf area, flesh weight and dry weight of oriental cabbage and lettuce were higher in coir substrate used for 2 years than those in unused one. Whereas, no significant difference was observed between the substrates used for one year and 2 years, indicating that the one time-used wast substrate could be recycled for cultivating vegetables. Growth of the vegetables was improved when organic fertilizer composed of complex organics with different mixing ratios was provided to the coir substrate, compared to untreated plot. The optimum mixing ratio of the wast substrate and complex organics was 2:8(v/v) for fertilization using wast coir substrate. Therefore, coir substrate generally wasted after being used for one time was reuseable by supplying organic fertilizer.

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.