DOI QR코드

DOI QR Code

Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage

배추에서 신규 염 저항성 관련 유전자 분리 및 검정

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2013.06.07
  • Accepted : 2013.07.17
  • Published : 2013.12.31

Abstract

This study was conducted to find a salt tolerance gene in Brassica rapa. In order to meet this objective, we analyzed data from a KBGP-24K oligo chip [BrEMD (Brassica rapa EST and microarray database)] of the B. rapa ssp. pekinensis 'Chiifu' under salt stress (250 mM NaCl). From the B. rapa KBGP-24K microarray chip analysis, 202 salt-responsive unigenes were primarily selected under salt stress. Of these, a gene with unknown function but known full-length sequence was chosen to closely investigate the gene function. The selected gene was named BrSSR (B. rapa salt stress resistance). BrSSR contains a 285 bp open reading frame encoding a putative 94-amino acid protein, and a DUF581 domain. The pSL94 vector was designed to over-express BrSSR, and was used to transform tobacco plants for salt tolerance analysis. T1 transgenic tobacco plants that over-expressed BrSSR were selected by PCR and DNA blot analyses. Quantitative real-time RT PCR revealed that the expression of BrSSR in transgenic tobacco plants increased by approximately 3.8-fold. Similar results were obtained by RNA blot analysis. Phenotypic characteristics analysis showed that transgenic tobacco plants with over-expressed BrSSR were more salt-tolerant than the wild type control under 250 mM NaCl for 5 days. Based on these results, we hypothesized that the over-expression of BrSSR may be closely related to the enhancement of salt tolerance.

본 연구는 배추에서 염 저항성 관련 유전자를 발굴하기 위해 수행되었다. 우선 염처리(250mM NaCl)된 순계배추 'Chiifu'를 이용한 KBGP-24K oligo chip 데이터[BrEMD(B. rapa EST and microarray database)]를 분석하였다. 그 결과, 염처리 시 크게 반응하는 202개의 unigene들을 1차 선발하였고, 이들 중 기능이 정확히 알려지지 않았으나 완전장을 갖추고 있는 1개의 유전자를 최종선발하여 BrSSR(B. rapa salt sensitive resistance)로 명명하였다. BrSSR은 94개의 아미노산으로 번역되는 총 285bp의 오픈리딩프레임을 가지고 있으며, DUF581 도메인을 지니고 있다. 염 저항성을 분석하기 위하여 BrSSR이 과발현된 pSL94 vector를 제작하여 담배에 형질전환시켰다. BrSSR이 과발현된 $T_1$ 세대 담배 형질전환체들은 PCR과 DNA blot 분석에 의해 선발하였다. Quantitative real-time RT PCR 분석 결과, 형질 전환된 담배에서 BrSSR의 발현이 대조군 보다 약 3.8배까지 높게 발현되었다. 이는 RNA blot 분석 결과와도 일치했다. 또한 표현형 분석에서 5일간 250mM NaCl 염 처리 후 BrSSR이 과발현된 형질전환체들이 대조군보다 우수한 염 저항성을 보여 주었다. 위 결과들에 근거하여 염 스트레스 환경 하에서 BrSSR 유전자의 과발현은 식물의 염 저항성을 향상과 매우 밀접한 관계가 있는 것으로 판단된다.

Keywords

References

  1. Bateman, A., P. Coggill, and R.D. Finn. 2010. DUFs: Families in search of function. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66:1148-1152. https://doi.org/10.1107/S1744309110001685
  2. Catty, P., S. Boutigny, R. Miras, J. Joyard, N. Rolland, and D. Seigneurin-Berny. 2011. Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J. Biol. Chem. 286:36188-36197. https://doi.org/10.1074/jbc.M111.241034
  3. Dlakic, M. 2006. DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22:2711-2714. https://doi.org/10.1093/bioinformatics/btl468
  4. Ettema, T.J., M.A. Huynen, W.M. de Vos, and J. van der Oost. 2003. TRASH: A novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem. Sci. 28:170-173. https://doi.org/10.1016/S0968-0004(03)00037-9
  5. Flowers, T.J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319. https://doi.org/10.1093/jxb/erh003
  6. Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22:875-884. https://doi.org/10.1071/PP9950875
  7. Ito, Y., K. Katsura, K. Maruyama, T. Taji, M. Kobayashi, M. Seki, K. Shinozaki, and K. Yamaquchi-Shinozaki. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47:141-153.
  8. Lee, M.K., H.S. Kim, S.H. Kim, and Y.D. Park. 2004. Analysis of T-DNA integration patterns in transgenic tobacco plants. J. Plant Biol. 47:179-186.
  9. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
  10. Lyon, C. 1941. Responses of two species of tomatoes and the $F_1$ generation to sodium sulphate in the nutrient medium. Bot. Gaz. 103:107-122. https://doi.org/10.1086/335027
  11. Marchler-Bauer, A., S. Lu, J.B. Anderson, F. Chitsaz, M.K. Derbyshire, C. DeWeese-Scott, J.H. Fong, L.Y. Geer, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, J.D. Jackson, Z. Ke, C.J. Lanczycki, F. Lu, G.H. Marchler, M. Mullokandov, M.V. Omelchenko, C.L. Robertson, J.S. Song, N. Thanki, R.A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and S.H. Bryant. 2011. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39:225-229. https://doi.org/10.1093/nar/gkq769
  12. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  13. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327. https://doi.org/10.1046/j.1365-313x.2000.00787.x
  14. Shalata, A. and M. Tal. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104:169-174. https://doi.org/10.1034/j.1399-3054.1998.1040204.x
  15. Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2003. Overexpression of a plasma membrane $Na^+/H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech. 21:81-85.
  16. Shikanai, T., P. Muller-Moule, Y. Munekage, K.K. Niyogi, and M. Pilon. 2003. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15: 1333-1346. https://doi.org/10.1105/tpc.011817
  17. Tester, M. and R. Davenport. 2003. $Na^+$ tolerance and $Na^+$ transport in higher plants. Ann. Bot. 91:503-527. https://doi.org/10.1093/aob/mcg058
  18. Testerink, C. and T. Munnik. 2005. Phosphatidic acid: A multi-functional stress signaling lipid in plants. Trends Plant Sci. 10:368-375. https://doi.org/10.1016/j.tplants.2005.06.002
  19. Wang, J., Y. Li, M. Zhang, Z. Liu, C. Wu, H. Yuan, Y.Y. Li, X. Zhao, and H. Lu. 2007. A zinc finger HIT domain-containing protein, ZNHIT-1, interacts with orphan nuclear hormone receptor Rev-erbbeta and removes Rev-erbbeta-induced inhibition of apoCIII transcription. FEBS J. 274:5370-5381. https://doi.org/10.1111/j.1742-4658.2007.06062.x
  20. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1-14. https://doi.org/10.1007/s00425-003-1105-5
  21. Winter, D., B. Vinegar, H. Nahal, R. Ammar, G.V. Wilson, and N.J. Provart. 2007. An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718. https://doi.org/10.1371/journal.pone.0000718
  22. Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249-257.
  23. Xu, D.Q., J. Huang, S.Q. Guo, X. Yang, Y.M. Bao, H.J. Tang, and H.S. Zhang. 2008. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett. 582:1037-1043. https://doi.org/10.1016/j.febslet.2008.02.052
  24. Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu, and Z. Gong. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2:22-31. https://doi.org/10.1093/mp/ssn058
  25. Yu, J.G., G.H. Lee, and Y.D. Park. 2012. Physiological role of endogenous S-adenosy-L-methionine synthetase in Chinese cabbage. Hort. Environ. Biotechnol. 53:247-255. https://doi.org/10.1007/s13580-012-0021-7
  26. Zhang, J.L., T.J. Flowers, and S.M. Wang. 2010. Mechanisms of soduim uptake by roots of higher plants. Plant Soil 326:45-60. https://doi.org/10.1007/s11104-009-0076-0
  27. Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6:66-71.
  28. Zurayk, R.A., N.F. Khoury, S.N. Talhouk, and R.Z. Baalbaki. 2001. Salinity-heavy metal interactions in four salt-tolerant plant species. J. Plant Nutr. 24:1773-1786. https://doi.org/10.1081/PLN-100107311

Cited by

  1. Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.14040