Browse > Article
http://dx.doi.org/10.7235/hort.2013.13086

Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage  

Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University)
Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
Publication Information
Horticultural Science & Technology / v.31, no.6, 2013 , pp. 748-755 More about this Journal
Abstract
This study was conducted to find a salt tolerance gene in Brassica rapa. In order to meet this objective, we analyzed data from a KBGP-24K oligo chip [BrEMD (Brassica rapa EST and microarray database)] of the B. rapa ssp. pekinensis 'Chiifu' under salt stress (250 mM NaCl). From the B. rapa KBGP-24K microarray chip analysis, 202 salt-responsive unigenes were primarily selected under salt stress. Of these, a gene with unknown function but known full-length sequence was chosen to closely investigate the gene function. The selected gene was named BrSSR (B. rapa salt stress resistance). BrSSR contains a 285 bp open reading frame encoding a putative 94-amino acid protein, and a DUF581 domain. The pSL94 vector was designed to over-express BrSSR, and was used to transform tobacco plants for salt tolerance analysis. T1 transgenic tobacco plants that over-expressed BrSSR were selected by PCR and DNA blot analyses. Quantitative real-time RT PCR revealed that the expression of BrSSR in transgenic tobacco plants increased by approximately 3.8-fold. Similar results were obtained by RNA blot analysis. Phenotypic characteristics analysis showed that transgenic tobacco plants with over-expressed BrSSR were more salt-tolerant than the wild type control under 250 mM NaCl for 5 days. Based on these results, we hypothesized that the over-expression of BrSSR may be closely related to the enhancement of salt tolerance.
Keywords
microarray; gene over-expression; transgenic tobacco;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Marchler-Bauer, A., S. Lu, J.B. Anderson, F. Chitsaz, M.K. Derbyshire, C. DeWeese-Scott, J.H. Fong, L.Y. Geer, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, J.D. Jackson, Z. Ke, C.J. Lanczycki, F. Lu, G.H. Marchler, M. Mullokandov, M.V. Omelchenko, C.L. Robertson, J.S. Song, N. Thanki, R.A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and S.H. Bryant. 2011. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39:225-229.   DOI   ScienceOn
2 Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250.   DOI   ScienceOn
3 Shalata, A. and M. Tal. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104:169-174.   DOI
4 Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2003. Overexpression of a plasma membrane $Na^+/H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech. 21:81-85.
5 Shikanai, T., P. Muller-Moule, Y. Munekage, K.K. Niyogi, and M. Pilon. 2003. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15: 1333-1346.   DOI
6 Tester, M. and R. Davenport. 2003. $Na^+$ tolerance and $Na^+$ transport in higher plants. Ann. Bot. 91:503-527.   DOI   ScienceOn
7 Testerink, C. and T. Munnik. 2005. Phosphatidic acid: A multi-functional stress signaling lipid in plants. Trends Plant Sci. 10:368-375.   DOI   ScienceOn
8 Bateman, A., P. Coggill, and R.D. Finn. 2010. DUFs: Families in search of function. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66:1148-1152.   DOI   ScienceOn
9 Catty, P., S. Boutigny, R. Miras, J. Joyard, N. Rolland, and D. Seigneurin-Berny. 2011. Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J. Biol. Chem. 286:36188-36197.   DOI   ScienceOn
10 Dlakic, M. 2006. DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22:2711-2714.   DOI   ScienceOn
11 Ettema, T.J., M.A. Huynen, W.M. de Vos, and J. van der Oost. 2003. TRASH: A novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem. Sci. 28:170-173.   DOI   ScienceOn
12 Flowers, T.J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319.   DOI   ScienceOn
13 Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22:875-884.   DOI
14 Ito, Y., K. Katsura, K. Maruyama, T. Taji, M. Kobayashi, M. Seki, K. Shinozaki, and K. Yamaquchi-Shinozaki. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47:141-153.
15 Lee, M.K., H.S. Kim, S.H. Kim, and Y.D. Park. 2004. Analysis of T-DNA integration patterns in transgenic tobacco plants. J. Plant Biol. 47:179-186.
16 Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249-257.
17 Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.   과학기술학회마을
18 Wang, J., Y. Li, M. Zhang, Z. Liu, C. Wu, H. Yuan, Y.Y. Li, X. Zhao, and H. Lu. 2007. A zinc finger HIT domain-containing protein, ZNHIT-1, interacts with orphan nuclear hormone receptor Rev-erbbeta and removes Rev-erbbeta-induced inhibition of apoCIII transcription. FEBS J. 274:5370-5381.   DOI   ScienceOn
19 Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1-14.   DOI   ScienceOn
20 Winter, D., B. Vinegar, H. Nahal, R. Ammar, G.V. Wilson, and N.J. Provart. 2007. An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718.   DOI
21 Xu, D.Q., J. Huang, S.Q. Guo, X. Yang, Y.M. Bao, H.J. Tang, and H.S. Zhang. 2008. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett. 582:1037-1043.   DOI   ScienceOn
22 Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu, and Z. Gong. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2:22-31.   DOI   ScienceOn
23 Yu, J.G., G.H. Lee, and Y.D. Park. 2012. Physiological role of endogenous S-adenosy-L-methionine synthetase in Chinese cabbage. Hort. Environ. Biotechnol. 53:247-255.   과학기술학회마을   DOI
24 Zhang, J.L., T.J. Flowers, and S.M. Wang. 2010. Mechanisms of soduim uptake by roots of higher plants. Plant Soil 326:45-60.   DOI
25 Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6:66-71.
26 Zurayk, R.A., N.F. Khoury, S.N. Talhouk, and R.Z. Baalbaki. 2001. Salinity-heavy metal interactions in four salt-tolerant plant species. J. Plant Nutr. 24:1773-1786.   DOI   ScienceOn
27 Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327.   DOI   ScienceOn
28 Lyon, C. 1941. Responses of two species of tomatoes and the $F_1$ generation to sodium sulphate in the nutrient medium. Bot. Gaz. 103:107-122.   DOI   ScienceOn