• 제목/요약/키워드: Branch Pipes

검색결과 62건 처리시간 0.022초

지역난방용 지중매설 배관망 네트워크 열-유체 동적 거동 모델링 (Dynamic modeling of the hydraulic-thermal behavior of the buried pipe network for district heating)

  • 이정빈;이준영;김래현;신치범
    • 에너지공학
    • /
    • 제21권2호
    • /
    • pp.144-151
    • /
    • 2012
  • 지역난방시스템이란 열에너지를 생산하고 만들어진 열에너지를 넓은 지역에 공급하는 시스템이다. 지역난방시스템은 국부난방보다 더 효율적이고 친환경적이라고 할 수 있다. 생산 된 열은 단열 배관 네트워크를 통해 사용자들에게 공급된다. 지역난방시스템의 효율적인 운전을 위해서는 여러 가지 운전 조건에서 배관망 네트워크의 유량, 압력 및 온도 분포를 예측하는 것이 중요하다. 본 연구에서는 지역난방용 지중매설 배관망 네트워크에서의 열-유체 동적거동을 수학적 모델을 사용하여 예측하였다. 수학적 모델은 물질, 운동량 및 에너지 수지식을 사용하였다. 모델링의 결과를 검증하기 위하여 강남지역 지역난방시스템에서 측정한 결과와 모델링의 결과를 비교하였다.

분기배관의 압력강하에 관한 연구 (A Study on the Pressure Drops of T-Branch Pipes)

  • 남준석;백창선;권순관;김동현;민경탁;김병곤;이성호
    • 한국화재소방학회논문지
    • /
    • 제22권3호
    • /
    • pp.272-277
    • /
    • 2008
  • 본 연구는 분기배관을 물계통 소화설비에 적용할 경우 정확한 등가길이를 제시하고자 수행하였다. 등가길이 측정위치를 예측하고자 분기배관의 압력강하에 대해 유한체적법을 이용하여 확인한 후 측정위치를 결정하였고 그 위치에서 압력손실시험을 실시하였다. 측정된 값의 정확성을 판단하기 위해 해석결과와 비교하였고 두 값이 유사함을 알 수 있었다. 본 연구의 결과로 분기배관의 압력손실측정위치를 주방향의 입구측은 주배관 호칭의 20배, 출구측은 주배관 호칭의 10배, 분기방향의 출구측은 주배관 호칭의 20배로 제안하였다.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

유체 이송 연직 외팔송수관의 동적안정성에 미치는 중력 효과 (Gravitational Effect on Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid)

  • 류봉조;류시웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.174-179
    • /
    • 2004
  • The paper deals with gravitational effect on dynamic stability of a cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratio of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

  • PDF

유체 이송 연직 외팔 송수관의 고유치분기와 플러터 모드에 미치는 중력 효과 (Gravitational Effect on Eigenvalue Branches and Flutter Modes of a Vertical Cantilevered Pipe Conveying Fluid)

  • 류시웅;신광복;류봉조
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.67-74
    • /
    • 2006
  • The paper presents gravitational effect on eigenvalue branches and flutter modes of a vertical cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the related numerical solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratios of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

유동망 시스템 해석을 위한 유령 정션 기법 (Ghost Junction Method for Flow Network System Analyses)

  • 홍석우;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.626-629
    • /
    • 2008
  • Numerical predictions on flow phenomena in pipe network systems have been considered as playing an important role in both designing and operating various facilities of piping or duct systems, such as water supply, tunnel or mine ventilation, hydraulic systems of automobile or aircraft, and etc. Traditionally, coupling conditions between junction and connected branches are assumed to satisfy conservation law of mass and to share an equal pressure at junction node. However, the conventional methodology cannot reflect momentum interactions between pipes sufficiently. Thus, a new finite volume junction treatment is proposed both to reflect the interchanges of linear momentums between neighbor branches at junction and to include the effect of wall at junction in present work.

  • PDF

고온 증기 파이프의 잔여수명 평가 (Remaining Life Assessment of High Temperature Steam Piping)

  • 윤기봉
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.12-24
    • /
    • 1995
  • 최근에 국내 화력발전설비도 사용 기간이 30년을 넘게 됨에 따라, 고온설비의 경년열화도 평가 및 수명예측 기술에 대한 연구가 활발해지고 있다. 본 논문에서는 l965년부터 사용되어 노 후된 영월화력발전소 2호기의 주증기 파이프를 대상으로 실시한 열화도 및 수명평가 결과를 보고하였다. 주증기관의 취약부인 맞대기 용접부, 지류 용접부, Y부 및 T부 등의 용접부에 대해 표면복제법, 경도측정법을 사용하여 수명평가를 실시하였으며, 비파괴 검사에 의해 균열이 탐지된 경우에는 수명평가 컴퓨터 코드를 사용하여 균열성장에 의한 잔여수명을 계산하였다. 또한 파이프 모재의 잔여 수명은 해석적 방법에 의해 정량적으로 잔여수명을 계산한 후, 외경 패출량 측정, 입계부식법 등에 의해 재질 열화도를 정성적으로 평가하였다. 본 논문에서 사용한 기법 이외의 방법을 사용하여 수명평가 정확도를 개선하는 방향에 대한 의견도 제시하였다.

  • PDF

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

연약지반 위에 포설된 고화차수재의 응력-변형 특성 (Stress-strain Behavior of Hardened Barrier on Soft Soil)

  • 장연수;이종호;임학수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2000
  • Settlement with crack on the hardened liners may occur in the weak clay due to waste load since the stiffness of the hardened liner is greater than that of the clay layers. Way of reducing deformation crack in the hardened liner is investigated using two computer programs, CONSOL and FLAC. The computer program CONSOL estimates the magnitude of settlement with time in clay layers and FLAC analyses the stress and deformation relationship between the foundation of landfill and waste load. The results show that a representative block of the analyzed area reaches the consolidation settlement of 1.32m, 8.8 years after the disposal of waste started with the degree of consolidation U=90%. The stress within the hardened liner exceeds the allowable vertical stress of 5kg/$\textrm{cm}^2$ and horizontal stress of 1.67kg/$\textrm{cm}^2$ at the concave part of the liner where the main and branch drainage pipes of leachate are located. It was recognized that the thickness of the interested area should be enlarged or the strength of the same area should be improved to tolerate the planned waste load.

  • PDF