DOI QR코드

DOI QR Code

Dynamic modeling of the hydraulic-thermal behavior of the buried pipe network for district heating

지역난방용 지중매설 배관망 네트워크 열-유체 동적 거동 모델링

  • Lee, Jeongbin (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University) ;
  • Yi, Jun Young (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University) ;
  • Kim, Lae-Hyun (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Shin, Chee Burm (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University)
  • 이정빈 (아주대학교 에너지시스템학부) ;
  • 이준영 (아주대학교 에너지시스템학부) ;
  • 김래현 (서울과학기술대학교 에너지환경대학원) ;
  • 신치범 (아주대학교 에너지시스템학부)
  • Received : 2012.05.04
  • Accepted : 2012.06.11
  • Published : 2012.06.30

Abstract

A district heating system produces thermal energy and supplies it to a large region. District heating systems can provide higher efficiencies and better pollution control than localized boilers. The heat generated by a district heating system is distributed to the customer via a network of insulated pipes. For the optimal operation of a district heating system, it is important to predict the distributions of pressure, flow rate and temperature of heating fluid within the network of pipes at various operating conditions. In this work, a mathematical modeling was performed to predict the dynamic hydraulic-thermal behaviors of heating fluid in the network of pipes for a district heating system. The mathematical model accounts for the conservations of mass, momentum and energy. In order to verify the validity of modeling, the modeling results were compared with the monitoring data of Gang-nam Branch of District Heating.

지역난방시스템이란 열에너지를 생산하고 만들어진 열에너지를 넓은 지역에 공급하는 시스템이다. 지역난방시스템은 국부난방보다 더 효율적이고 친환경적이라고 할 수 있다. 생산 된 열은 단열 배관 네트워크를 통해 사용자들에게 공급된다. 지역난방시스템의 효율적인 운전을 위해서는 여러 가지 운전 조건에서 배관망 네트워크의 유량, 압력 및 온도 분포를 예측하는 것이 중요하다. 본 연구에서는 지역난방용 지중매설 배관망 네트워크에서의 열-유체 동적거동을 수학적 모델을 사용하여 예측하였다. 수학적 모델은 물질, 운동량 및 에너지 수지식을 사용하였다. 모델링의 결과를 검증하기 위하여 강남지역 지역난방시스템에서 측정한 결과와 모델링의 결과를 비교하였다.

Keywords

Acknowledgement

Grant : 광역에너지 네트워크 최적화 및 통합관리시스템개발

Supported by : 한국에너지기술평가원

References

  1. Taylor, N. R.; Stierhoff, K. L.: District Heating Handbook; The International District Heating Association: Washington, D.C., 1983.
  2. Pinson, P.; Nielsen, T. S.; Nielsen, H. Aa.; Poulsen, N. K.; Madsen, H. Temperature prediction at criticalpoints in districtheating systems. European Journal of Operational Research, 2009, 194, 163-176. https://doi.org/10.1016/j.ejor.2007.11.065
  3. Larsen, H. V.; P?lsson, H.; Bohm, B. Aggregated dynamic simulation model of district heating networks. Energy Conversion and Management, 2002, 43, 995-1019. https://doi.org/10.1016/S0196-8904(01)00093-0
  4. Vasek L.; Dolinary, V. Simulation model of heat distribution and consumption in municipal heating network. International journal of mathematical models and methods in applied science, 2010, 4, 240-248.
  5. Gabrielatene, I.; Kacianauskas, R. Aggregated dynamic simulation model of district heating networks. Digital library of construction informatics and information technology in civil engineering and construction, 2001, 9, 995-1019.
  6. Stevanovic, V. D.; Prica, S.; Maslovaric, B. Efficient numerical method for district heating system hydraulics, Energy Conversion and Management, 2007, 48, 1536-1543. https://doi.org/10.1016/j.enconman.2006.11.018
  7. Lianzhong, L. Dynamic modeling and optimal operation of district heating system. Master Thesis, Concordia University, Montreal, Quebec, Canada, 2003.
  8. Benonysson, A.; Bohm, B.; Ravn, H. F. Operational optimization in a district heating system. Energy Conversion and Management, 1995, 36, 297-314. https://doi.org/10.1016/0196-8904(95)98895-T

Cited by

  1. The convective heat transfer of branched structure vol.116, 2018, https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.056