• Title/Summary/Keyword: Brain stem

Search Result 343, Processing Time 0.032 seconds

Altered free amino acid levels in brain cortex tissues of mice with Alzheimer's disease as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives

  • Paik, Man-Jeong;Cho, In-Seon;Mook-Jung, In-Hee;Lee, Gwang;Kim, Kyoung-Rae
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • The altered amino acid (AA) levels as neurotransmitter closely correlate to neurodegenerative conditions including Alzheimer's disease (AD). Target profiling analysis of nineteen AAs in brain cortex samples from three Tg2576 mice as AD model and three littermate mice as control model was achieved as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography. Subsequently, star pattern recognition analysis was performed on the brain AA levels of AD mice after normalization to the corresponding control median values. As compared to control mice, $\gamma$-aminobutyric acid among ten AAs found in brain samples was significantly reduced (P < 0.01) while leucine was significantly elevated (P < 0.02) in AD mice. The normalized AA levels of the three AD mice were transformed into distorted star patterns which was different from the decagonal shape of control median. The present method allowed visual discrimination of the three AD mice from the controls based on the ten normalized AA levels.

Lack of Myelination in the Anterior Limbs of the Internal Capsule Associated with Cri-du-Chat Syndrome: Case Report

  • Lee, Hyo Jin;You, Sun Kyoung;Lee, So Mi;Cho, Hyun-Hae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.114-116
    • /
    • 2015
  • A 21-month-old girl with cri-du-chat syndrome in conjunction with developmental delay underwent brain magnetic resonance imaging (MRI). The MRI showed hypoplasia of the brain stem, a normal cerebellum, thinning of the corpus callosum, and a lack of myelination in both anterior limbs of the internal capsule. She also had neonatal bilateral subependymal cysts. We believe that the symmetrical lack of myelination in both anterior limbs of the internal capsule could be a diagnostic clue of cri-du-chat syndrome.

Biology of Glioma Cancer Stem Cells

  • Park, Deric M.;Rich, Jeremy N.
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for In vitro and in vivo growth, a property intimately linked to the cell's differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the socalled glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.

Effects of Ginseng Total Saponin on [3H]DAGO Bindings of Opioid μ-Receptors

  • Oh, Ki-Wan;Lim, Hwa-Kyung;Park, Cheol-Beum;Shin, Im-Chul;Hong, Jin-Tae
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.187-190
    • /
    • 2002
  • Crude synaptic membrane fractions from the frontal cortex, striatum, brain stem and whole brain of rat were prepared to assay the effects of ginseng total saponin (GTS) on [$^3$H]DAGO bindings of the opioid $\mu$-receptors. Scatchard plots analysis binding data demonstrated that GTS (0.1 mg/ml) decreased the affinity of specific [$^3$H]DAGO bindings without changes in B$\_$max/ in the frontal cortex and striatum. On the other hand, GTS did not affect the [$^3$H]DAGO bindings iii the brain stem and whole brain. These results suggest that the regulation of [$^3$H]DAGO bindings by GTS may play roles in the change of the pharmacological responses of $\mu$-opioids.

Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids

  • Ju-Hyun Lee;Mohammed R. Shaker;Si-Hyung Park;Woong Sun
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.

Brain death and organ transplantation (뇌사와 심폐사 그리고 장기이식)

  • Nam, Sang-Ook
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.856-861
    • /
    • 2009
  • Cardiopulmonary arrest has long been accepted as an unquestionable definition of death. An advent of cardiopulmonary resuscitation and artificial ventilation along with the development of organ transplantation has prompted the emergence of the concept of brain death. The criteria for brain death are based mainly on the clinical examination of coma, apnea and total loss of brain stem function. Although organ transplantation by donor brain death has increased in Korea over recent years, there is still a substantial shortage of donor organs compared to the demand. Improvement of government policies and changes of social culture for organ donation are needed for the activation of organ transplantation by donor brain death. Pediatricians have an important role for the search of potential donors in cases of brain death and optimal medical care for successful organ transplantation.

The Diagnosis and Ancillary Tests of Brain Death (뇌사의 진단과 진단을 위한 보조적 검사)

  • Kim, Cheon-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Brain death is defined as the irreversible cessation of all brain function. The diagnosis of brain death is primarily based on a careful neurological examination demonstrating unresponsiveness, absent of brain stem reflexes, and no respiratory activity. Several conditions which may mimic brain death must be excluded. In some cases investigations such as electroencephalography, angiography, transcranial doppler or evoked potentials can contribute to the diagnosis. The brief review will introduce medical technologist and clinician to the key issues in the definition and management of brain death.

  • PDF

Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure

  • Ju, Hee Young;Hong, Che Ry;Shin, Hee Young
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.10
    • /
    • pp.434-439
    • /
    • 2014
  • Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered.

Kir4.1 is coexpressed with stemness markers in activated astrocytes in the injured brain and a Kir4.1 inhibitor BaCl2 negatively regulates neurosphere formation in culture

  • Kwon, Jae-Kyung;Choi, Dong-Joo;Yang, Haijie;Ko, Dong Wan;Jou, Ilo;Park, Sang Myun;Joe, Eun-Hye
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2021
  • Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and β-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.