Browse > Article
http://dx.doi.org/10.1007/s10059-009-0111-2

Biology of Glioma Cancer Stem Cells  

Park, Deric M. (University of Pittsburgh Cancer Institute)
Rich, Jeremy N. (Department of Stem Cell Biology and Regenerative Medicine Cleveland Clinic)
Abstract
Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for In vitro and in vivo growth, a property intimately linked to the cell's differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the socalled glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.
Keywords
brain tumor; cancer stem cell; glioma; glioblastoma;
Citations & Related Records

Times Cited By Web Of Science : 32  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bao, S., Wu, Q., Li, Z., Sathornsumetee, S., Wang, H., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043-6048   DOI   ScienceOn
2 Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737   DOI   ScienceOn
3 Conheim, V. (1875). Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 65, 64-69   DOI
4 Dietrich, J., Imitola, J., and Kesari, S. (2008). Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. 5, 393-404
5 Harris, H. (2004). Tumour suppression: putting on the brakes. Nature 427, 201   DOI   PUBMED   ScienceOn
6 Harris, H. (2005). A long view of fashions in cancer research. Bioessays 27, 833-838   DOI   PUBMED   ScienceOn
7 Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178-15183   DOI   ScienceOn
8 Ogden, A.T., Waziri, A.E., Lochhead, R.A., Fusco, D., Lopez, K., Ellis, J.A., Kang, J., Assanah, M., McKhann, G.M., Sisti, M.B., et al. (2008). Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505-514; discussion 514-515   DOI   ScienceOn
9 Park, D.M., Hoeppner, D.J., Ravin, R., Androutsellis-Theotokis, A., Miller, J., Park, M.J., Soeda, A., and McKay, R.D. (2008). SSEA-1 is expressed by glioblastoma-derived cancer stem cells and identifies the highly proliferative fraction. Society for Neuroscience 2008 Annual Meeting Abstract 654.21/DD2
10 Peiffer, J., and Kleihues, P. (1999). Hans-Joachim Scherer (1906-1945), pioneer in glioma research. Brain Pathol. 9, 241-245   DOI   ScienceOn
11 Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111   DOI   ScienceOn
12 Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401   DOI   ScienceOn
13 Samuelsen, S.O., Bakketeig, L.S., Tretli, S., Johannesen, T.B., and Magnus, P. (2006). Head circumference at birth and risk of brain cancer in childhood: a population-based study. Lancet Oncol. 7, 39-42   DOI   ScienceOn
14 Schulenburg, A., Ulrich-Pur, H., Thurnher, D., Erovic, B., Florian, S., Sperr, W.R., Kalhs, P., Marian, B., Wrba, F., Zielinski, C.C., et al. (2006). Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107, 2512-2520   DOI   ScienceOn
15 Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338-1340   DOI   PUBMED   ScienceOn
16 Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62   DOI   PUBMED
17 Uhrbom, L., Dai, C., Celestino, J.C., Rosenblum, M.K., Fuller, G.N., and Holland, E.C. (2002). Ink4a-Arf loss cooperates with KRas activation in strocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62, 5551-5558   PUBMED
18 Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., and Parada, L.F. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes. Dev. 15, 859-876   DOI   ScienceOn
19 Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D.K., Mason, R.P., Messing, A., and Parada, L.F. (2005a). Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119-130   DOI   ScienceOn
20 Zhu, Y., Harada, T., Liu, L., Lush, M.E., Guignard, F., Harada, C., Burns, D.K., Bajenaru, M.L., Gutmann, D.H., and Parada, L.F. (2005b). Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132, 5577-5588   DOI   ScienceOn
21 Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M. (2006). Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339-9344   DOI   ScienceOn
22 Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760   DOI   ScienceOn
23 Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011-7021   DOI   ScienceOn
24 Taipale, J., and Beachy, P.A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354   DOI   ScienceOn
25 Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and McKay, R.D. (2006). Notch signalling regulates stem cell numbers in vitro and in vitro. Nature 442, 823-826   DOI   ScienceOn
26 Fidler, I.J., and Kripke, M.L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893-895   DOI   PUBMED
27 O’Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110   DOI   ScienceOn
28 Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415-434   DOI   ScienceOn
29 Ravin, R., Hoeppner, D.J., Munno, D.M., Carmel, L., Sullivan, J., Levitt, D.L., Miller, J.L., Athaide, C., Panchision, D.M., and McKay, R.D. (2008). Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670-680   DOI   ScienceOn
30 Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242-245   DOI   PUBMED   ScienceOn
31 Marchuk, D.A., Saulino, A.M., Tavakkol, R., Swaroop, M., Wallace, M.R., Andersen, L.B., Mitchell, A.L., Gutmann, D.H., Boguski, M., and Collins, F.S. (1991). cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931-940   DOI   PUBMED
32 Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983-3988   DOI   ScienceOn
33 Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., and Morrison, S.J. (2008). Efficient tumour formation by single human melanoma cells. Nature 456, 593-598   DOI   ScienceOn
34 Rich, J.N., and Eyler, C.E. (2008). Cancer stem cells in brain tumor biology. Cold Spring Harbor symposia on quantitative biology 73, 411-420   DOI   PUBMED   ScienceOn
35 Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L. (2000). Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720-14725   DOI   ScienceOn
36 Dahlstrand, J., Collins, V.P., and Lendahl, U. (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 5334-5341   PUBMED
37 Kripke, M.L., Gruys, E., and Fidler, I.J. (1978). Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosar coma of recent origin. Cancer Res. 38, 2962-2967   PUBMED
38 Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C.P. (2007). CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010-4015   DOI   ScienceOn
39 Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., and Maitland, N.J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946-10951   DOI   ScienceOn
40 Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres- Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648   DOI   PUBMED   ScienceOn
41 Bajenaru, M.L., Zhu, Y., Hedrick, N.M., Donahoe, J., Parada, L.F., and Gutmann, D.H. (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100-5113   DOI   ScienceOn
42 Bar, E.E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A.L., DiMeco, F., Olivi, A., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524-2533   DOI   ScienceOn
43 Horbinski, C., Mintz, A., Engh, J., Lieberman, F., Hamilton, R.L., and Park, D.M. (2009). Post-therapeutic changes in the molecular profile of glioblastomas. J. Clin. Oncol. 27, No 15S, 93
44 Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479-494   DOI   ScienceOn
45 Joo, K.M., Kim, S.Y., Jin, X., Song, S.Y., Kong, D.S., Lee, J.I., Jeon, J.W., Kim, M.H., Kang, B.G., Jung, Y., et al. (2008). Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest. 88, 808-815   DOI   ScienceOn
46 Bachoo, R.M., Maher, E.A., Ligon, K.L., Sharpless, N.E., Chan, S.S., You, M.J., Tang, Y., DeFrances, J., Stover, E., Weissleder, R., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269-277   DOI   ScienceOn
47 Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Ann. Rev. Med. 58, 267-284   DOI   ScienceOn
48 Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835   DOI   ScienceOn
49 Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843-7848   DOI   ScienceOn
50 Eyler, C.E., Foo, W.C., LaFiura, K.M., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26, 3027-3036   DOI   ScienceOn
51 Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673   DOI   PUBMED   ScienceOn
52 Gilbertson, R.J., and Rich, J.N. (2007). Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. 7, 733-736   DOI   ScienceOn
53 Kreisl, T.N., Kim, L., Moore, K., Duic, P., Royce, C., Stroud, I., Garren, N., Mackey, M., Butman, J.A., Camphausen, K., et al. (2009). Phase II trial of ingle-agent bevacizumab followed by bevacizumab plus irinotecan at tumor rogression in recurrent glioblastoma. J. Clin. Oncol. 27, 740-745   DOI   ScienceOn
54 Rizzo, P., Osipo, C., Foreman, K., Golde, T., Osborne, B., and Miele, L. (2008). Rational targeting of Notch signaling in cancer. Oncogene 27, 5124-5131   DOI   ScienceOn
55 Vredenburgh, J.J., Desjardins, A., Herndon, J.E., 2nd, Marcello, J., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Sampson, J., et al. (2007). Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722-4729   DOI   ScienceOn
56 Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., et al. (2009). Donor-derived brain tumor follow-ing neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029   PUBMED
57 Tohyama, T., Lee, V.M., Rorke, L.B., Marvin, M., McKay, R.D., and Trojanowski, J.Q. (1992). Nestin expression in embryonic human euroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66, 303-313
58 Valtz, N.L., Hayes, T.E., Norregaard, T., Liu, S.M., and McKay, R.D. (1991). An embryonic origin for medulloblastoma. New Biol. 3, 364-371
59 Miele, L., Golde, T., and Osborne, B. (2006). Notch signaling in cancer. Curr. Mol. Med. 6, 905-918   DOI   ScienceOn
60 Park, D.M., Li, J., Okamoto, H., Akeju, O., Kim, S.H., Lubensky, I., Vortmeyer, A., Dambrosia, J., Weil, R.J., Oldfield, E.H., et al. (2007). N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle 6, 467-470   DOI   PUBMED   ScienceOn
61 Wang, J., Sakariassen, P.O., Tsinkalovsky, O., Immervoll, H., Boe, S.O., Svendsen, A., Prestegarden, L., Rosland, G., Thorsen, F., Stuhr, L., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer 122, 761-768   DOI   ScienceOn
62 Carstensen, H., Juhler, M., Bogeskov, L., and Laursen, H. (2006). A report of nine newborns with congenital brain tumours. Childs Nerv. Syst. 22, 1427-1431   DOI   ScienceOn
63 Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., and Fuller, G.N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55-57   DOI   ScienceOn
64 Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828   PUBMED
65 Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996   DOI   ScienceOn
66 Beier, D., Rohrl, S., Pillai, D.R., Schwarz, S., Kunz-Schughart, L.A., Leukel, P., Proescholdt, M., Brawanski, A., Bogdahn, U., Trampe-Kieslich, A., et al. (2008). Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 68, 5706-5715   DOI   ScienceOn
67 Lagasse, E. (2008). Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 15, 136-142   DOI   PUBMED   ScienceOn
68 Odoux, C., Fohrer, H., Hoppo, T., Guzik, L., Stolz, D.B., Lewis, D.W., Gollin, S.M., Gamblin, T.C., Geller, D.A., and Lagasse, E. (2008). A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 68, 6932-6941   DOI   ScienceOn
69 Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D.L., Black, K.L., and Yu, J.S. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392-9400   DOI   ScienceOn
70 Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and Weinberg, R.A. (2008). An embryonic stem celllike gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499-507   DOI   ScienceOn
71 Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70   DOI   ScienceOn
72 Ignatova, T.N., Kukekov, V.G., Laywell, E.D., Suslov, O.N., Vrionis, F.D., and Steindler, D.A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vivo. Glia 39, 193-206   DOI   ScienceOn
73 Louis, D.N., Ohgaki, H., Wiestler, O.D., and Cavenee, W.K. (2007). WHO Classification of Tumours of the Central Nervous System; in World Classification of Tumours, International Agency for Research on Cancer (IARC), Lyon
74 Virchow, R. (1858). Cellular Pathology, Berlin
75 Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., and Alvarez-Buylla, A. (2006). PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187-199   DOI   ScienceOn