• Title/Summary/Keyword: Brain glioma

Search Result 153, Processing Time 0.024 seconds

Cerebellar Schistosomiasis: A Case Report with Clinical Analysis

  • Wan, Heng;Lei, Ding;Mao, Qing
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.1
    • /
    • pp.53-56
    • /
    • 2009
  • The authors report here a rare case of cerebellar schistosomiasis identified by pathological diagnosis, lacking extracranial involvement. The clinical symptoms included headache, dizziness, and nausea. Studies in blood were normal and no parasite eggs were detected in stool. Computed tomography of brains showed hypodense signal, and magnetic resonance imaging showed isointense signal on T1-weighted images, hyperintense signal on T2-weighted images, and intensely enhancing nodules in the right cerebellum after intravenous administration of gadolinium. A high-grade glioma was suspected, and an operation was performed. The pathologic examination of the biopsy specimen revealed schistosomal granulomas scattered within the parenchyma of the cerebellum. The definitive diagnosis was cerebellar schistosomiasis japonica. A standard use of praziquantel and corticosteroid drugs was applied, and the prognosis was good. When the pattern of imaging examinations is present as mentioned above, a diagnosis of brain schistosomiasis should be considered.

Resveratrol Induces Cell Death through ROS-dependent MAPK Activation in A172 Human Glioma Cells (사람의 신경교모세포종 기원 세포에서 레스베라트롤에 의한 활성산소종 생성 증가와 MAPK 활성화를 통한 세포 사멸 효과)

  • Jung, Jung Suk;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • Glioblastoma multiforme is the most common and most aggressive type of primary brain tumor in humans. Despite intensive treatment, including surgery, radiation, and chemotherapy, most patients die of the disease. Although the anti-cancer activity of resveratrol has been demonstrated in various cancer cell types, its underlying mechanism in glioma cells is not fully elucidated. The present study was undertaken to investigate the effect of resveratrol on cell viability and to determine the molecular mechanism in A172 human glioma cells. Resveratrol caused the generation of reactive oxygen species (ROS), and resveratrol-induced cell death was prevented by antioxidants (N-acetylcysteine and catalase), suggesting that an oxidative mechanism is responsible for resveratrol-induced cell death. Resveratrol-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK), and resveratrol-induced cell death were prevented by inhibitors of these kinases. Resveratrol-induced activation of caspase-3 and cell death were prevented by the caspase inhibitors. ERK activation and caspase-3 activation induced by resveratrol was blocked by N-acetylcysteine. Taken together, these results suggest that resveratrol causes a caspase-dependent cell death via activation of ERK, p38, and JNK, mediated by ROS generation, in human glioma cells.

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

Effects of BojungIkkiTang-Gamybang on Protective of Cell Death and Anti-Oxidative in C6 Glioma Cell (보중익기탕가미방(補中益氣湯加味方)이 신경교세포의 세포사멸보호 및 항산화에 미치는 영향)

  • Hwang, Gui-Seong;Kim, Hyung-Woo;Choi, Chan-Hun;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.401-409
    • /
    • 2010
  • This study was designed to investigate the effects of BojungIkkiTang-Gamybang freeze dried powder (BITG) on proliferauion, protective of cell death induced by chemicals such as paraquat, hydrogen peroxide etc and anti-oxidative effects in C6 glioma cells. In our results, BITC accelerated proliferation rates of C6 cells in vitro. In addition, protective effects on cell death induced by paraquat and hydrogen peroxide. And, BITC did not have effects on SOD and total glutathione activities, but decresed malone dialdehyde activity. In conclusion, these results suggest the possibility of BojungIkkiTang-Gamybang to protect brain cell or neuronal cell from damage induced by oxidative stress. And also suggest that related mechanisms are involved in malone dialdehyde activity.

Development of Image-based System for Multiple Fluorescence Imaging Study (다중형광영상 연구를 위한 영상기반 시스템 개발)

  • Yoon, WoongBae;Kim, Hong Rae;Lee, Hyun Min;Kim, Young Jae;Kim, Kwang Gi;Yoo, Heon;Lee, Seung Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1445-1452
    • /
    • 2015
  • In these days, fluorescent materials such as ICG or 5-ALA is used for the brain surgery. The patients who underwent brain tumor surgery has been increased during last 30 years and the survivorship rate increased 22∼33% in 5 years. Recently, the Fluorescence induction surgery is developed for more safety and improved the resection rate for the glioma in the neurosurgery field. In this study, we proposed fluorescence area detection method for ICG and 5-ALA fluorescence induced surgery using acquired images from image processing. Accuracy was 99.21% from ICG images, and 99.51% from 5-ALA images. Matthews correlation coefficient was 88.67% from ICG images, and 90.49% from 5-ALA images.

Rapid Atypical Progression of Neuro-Behçet's Disease Involving Whole Brainstem and Bilateral Thalami

  • Lee, Sang-Kook;Choi, Sung-Jae;Kim, Sang-Dae;Lim, Dong-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.1
    • /
    • pp.68-71
    • /
    • 2011
  • We present a case of Neuro-Behçet's disease with an unpredictable clinical course. A 47-year-old man was admitted to the neurosurgery department of our hospital with a mild headache. Three days after admission, his consciousness suddenly decreased and respiratory distress progressed rapidly. A brain MRI revealed that the previously observed abnormal signal had extended markedly to both the thalamic areas and the entire brain stem, and the surrounding brain parenchyma were compressed by cerebral edema. Based on the patient's symptoms of recurrent oral and genital ulcers, skin lesions, and uveitis, a rheumatologist made a diagnosis of Behçet's disease with CNS involvement. The patient was treated with high-dose methylprednisolone with respiratory assistance in the intensive care unit for 9 days and his neurologic symptoms improved remarkably. Neuro-Behçet's disease must be considered in the differential diagnosis in rapidly deteriorated young neurological patients along with a stroke, low-grade glioma, multiple sclerosis, and occlusive venous disease.

Telmisartan Inhibits TNFα-Induced Leukocyte Adhesion by Blocking ICAM-1 Expression in Astroglial Cells but Not in Endothelial Cells

  • Jang, Changhwan;Kim, Jungjin;Kwon, Youngsun;Jo, Sangmee A.
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.423-430
    • /
    • 2020
  • Telmisartan is an angiotensin-II receptor blocker and acts as a selective modulator of peroxisome proliferator-activated receptor gamma (PPARγ). Several studies have demonstrated that telmisartan ameliorates depression and memory dysfunction and reduces brain inflammation. We hypothesized that the beneficial effects of telmisartan on brain could be due to modulation of the blood-brain barrier (BBB) function. Here, we examined the effect of telmisartan on tumor necrosis factor alpha (TNF-α)-induced expression of intercellular adhesion molecule 1 (ICAM-1) which plays an important role in leukocyte transcytosis through the BBB. Telmisartan blocked TNF-α-induced ICAM-1 expression and leukocyte adhesion in U87MG human glioma cells but showed no effect on human brain microvascular endothelial cells. In U87MG cells, a PPAR antagonist, GW9662 did not block the effect of telmisartan on ICAM1 expression but rather potentiated. Moreover, GW9662 caused no change in TNF-α-induced ICAM-1 expression, suggesting no implication of PPARγ in the telmisartan effect. Further studies showed that telmisartan blocked TNF-α-induced activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factorkappa B (NF-κB). In contrast, inhibitors of JNK, ERK1/2 and NF-κB but not p38, blocked ICAM-1 expression induced by TNF-α. Thus, our findings suggest that the beneficial effect of telmisartan is likely due to the reduction of astrocytic ICAM1 expression and leukocytes adhesion to astrocytes, and that this response was mediated by the inhibition of JNK/ERK1/2/NF-κB activation and in the PPAR-independent manner. In conclusion, this study enhances our understanding of the mechanism by which telmisartan exerts the beneficial brain function.

Preoperative Evaluation of Brain Lesion with $^{201}Tl$ Brain SPECT: Is It Useful to Differentiate Benign and Malignant Lesions? (수술 전 뇌 병변의 $^{201}Tl$ 뇌 SPECT: 양성과 악성 병변을 감별하는데 유용한가?)

  • Sohn, Hyung-Sun;Kim, Euy-Neyng;Kim, Sung-Hoon;Chung, Yong-An;Chung, Soo-Kyo;Bong, Yong-Gil;Lee, Youn-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.371-380
    • /
    • 2000
  • Purpose: Thallim-201 ($^{201}Tl$) brain SPECT, which can represent cellular activity of brain lesions, may provide more useful information in differentiating between benign and malignant brain lesions more so than CT of MRI, that merely represents anatomic changes or breakdown of blood brain barrier. We used $^{201}Tl$ brain SPECT prospectively to evaluate the utility of $^{201}Tl$-indices as an indicator of benign or malig nant lesions. Materials and Methods: We studied 28 patients. There were 13 cases of benign lesions (3: nonspecific benign lesion, 3: meningioma, 2: low grade glioma, 1: tuberculoma, central neurocytoma, hemangioblastoma, radiation necrosis, and choroid plexus papilloma) and 15 cases of malignant lesions (6: glioblastoma multiforme, 5: anaplastic glioma, 2: medulloblastoma, 1: metastasis and lymphoma). In all patients, CT and/or MRI were obtained and then $^{201}Tl$ brain SPECT was obtained with measuring mean $^{201}Tl$ index and peak $^{201}Tl$ index. An unpaired t-test was performed to compare the $^{201}Tl$-indices and pathologic diagnoses to evaluate the utility of $^{201}Tl$-indices as all indicator of benign or malignant lesions. Results: There were no statistically significant difference in $^{201}Tl$-indices between benign and malignant brain lesion (p>0.05). Conclusion: These results demonstrated that we could not use $^{201}Tl$ indices on brain SPECT alone as an indicator of benign or malignant brain lesions.

  • PDF