Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0098

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model  

Han, Ji-hun (Department of Biomedical Sciences, Ajou Graduate School)
Yoon, Jeong Seon (Department of Anatomy, Ajou University School of Medicine)
Chang, Da-Young (Department of Biomedical Sciences, Ajou Graduate School)
Cho, Kyung Gi (Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine)
Lim, Jaejoon (Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine)
Kim, Sung-Soo (Department of Biomedical Sciences, Ajou Graduate School)
Suh-Kim, Haeyoung (Department of Biomedical Sciences, Ajou Graduate School)
Abstract
Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.
Keywords
glioblastoma; invasion; LN229; tumor microenvironment; U87;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, M., Bjerke, M., Edlund, H., Nelander, S., and Westermark, B. (2016). Origin of the U87MG glioma cell line: good news and bad news. Sci. Transl. Med. 8, 354re3.   DOI
2 Armento, A., Ehlers, J., Schotterl, S., and Naumann, U. (2017). Molecular mechanisms of glioma cell motility. In Glioblastoma, S.D. Vleeschouwer, ed. (Brisbane, Australia: Codon Publications), pp. 73-94.
3 Bougnaud, S., Golebiewska, A., Oudin, A., Keunen, O., Harter, P.N., Mader, L., Azuaje, F., Fritah, S., Stieber, D., Kaoma, T., et al. (2016). Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 7, 31955-31971.   DOI
4 Burden-Gulley, S.M., Qutaish, M.Q., Sullivant, K.E., Lu, H., Wang, J., Craig, S.E.L., Basilion, J.P., Wilson, D.L., and Brady-Kalnay, S.M. (2011). Novel cryoimaging of the glioma tumor microenvironment reveals migration and dispersal pathways in vivid three-dimensional detail. Cancer Res. 71, 5932-5940.   DOI
5 Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J.K., Fang, X., Sloan, A.E., Mao, Y., Lathia, J.D., et al. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139-152.   DOI
6 Delgado-Lopez, P.D., Saiz-Lopez, P., Gargini, R., Sola-Vendrell, E., and Tejada, S. (2020). A comprehensive overview on the molecular biology of human glioma: what the clinician needs to know. Clin. Transl. Oncol. 2020 Mar 28 [Epub]. https://doi.org/10.1007/s12094-020-02340-8
7 Dello, R.C., Lisi, L., Tentori, L., Navarra, P., Graziani, G., and Combs, C.K. (2017). Exploiting microglial functions for the treatment of glioblastoma. Curr. Cancer Drug Targets 17, 267-281.   DOI
8 Gjorgjevski, M., Hannen, R., Carl, B., Li, Y., Landmann, E., Buchholz, M., Bartsch, J.W., and Nimsky, C. (2019). Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/ macrophage polarization state with metalloprotease expression profiles and survival. Biosci. Rep. 39, BSR20182361.   DOI
9 Graeber, M.B., Scheithauer, B., and Kreutzberg, G. (2002). Microglia in brain tumors. Glia 40, 252-259.   DOI
10 Hambardzumyan, D., Gutmann, D.H., and Kettenmann, H. (2016). The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20-27.   DOI
11 Ahn, H.J., Hwang, S.Y., Nguyen, N.H., Lee, I.J., Lee, E.J., Seong, J., and Lee, J.S. (2019). Radiation-induced CXCL12 upregulation via histone modification at the promoter in the tumor microenvironment of hepatocellular carcinoma. Mol. Cells 42, 530-545.   DOI
12 Ahr, B., Denizot, M., Robert-Hebmann, V., Brelot, A., and Biard-Piechaczyk, M. (2005). Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J. Biol. Chem. 280, 6692-6670.   DOI
13 Hussain, S.F., Yang, D., Suki, D., Aldape, K., Grimm, E., and Heimberger, A.B. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 8, 261-279.   DOI
14 Kazda, T., Dziacky, A., Burkon, P., Pospisil, P., Slavik, M., Rehak, Z., Jancalek, R., Slampa, P., Slaby, O., and Lakomy, R. (2018). Radiotherapy of glioblastoma 15 years after the landmark Stupp's trial: more controversies than standards? Radiol. Oncol. 52, 121-128.   DOI
15 Kioi, M., Vogel, H., Schultz, G., Hoffman, R.M., Harsh, G.R., and Brown, J.M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694-705.   DOI
16 Masuda, J., Shigehiro, T., Matsumoto, T., Satoh, A., Mizutani, A., Umemura, C., Saito, S., Kijihira, M., Takayama, E., Seno, A., et al. (2018). Cytokine expression and macrophage localization in xenograft and allograft tumor models stimulated with lipopolysaccharide. Int. J. Mol. Sci. 19, E1261.   DOI
17 Kostianovsky, A.M., Maier, L.M., Anderson, R.C., Bruce, J.N., and Anderson, D.E. (2008). Astrocytic regulation of human monocytic/microglial activation. J. Immunol. 181, 5425-5432.   DOI
18 Lisi, L., Ciotti, G.M., Braun, D., Kalinin, S., Currò, D., Dello, R.C., Coli, A., Mangiola, A., Anile, C., Feinstein, D.L., et al. (2017). Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645, 106-112.   DOI
19 Luwor, R.B., Stylli, S.S., and Kaye, A.H. (2013). The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci. 20, 907-911.   DOI
20 Mueller, A.M., Yoon, B.H., and Sadiq, S.A. (2014). Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 289, 22888-22899.   DOI
21 Quail, D.F. and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437.   DOI
22 Rao, S., Sengupta, R., Choe, E.J., Woerner, B.M., Jackson, E., Sun, T., Leonard, J., Piwnica-Worms, J., and Rubin, J.B. (2012). CXCL12 mediates trophic interactions between endothelial and tumor cells in glioblastoma. PLoS One 7, e33005.   DOI
23 Thakkar, J.P., Dolecek, T.A., Horbinski, C., Ostrom, Q.T., Lightner, D.D., Barnholtz-Sloan, J.S., and Villano, J.L. (2014). Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 23, 1985-1996.   DOI
24 Zeng, Y., Wang, X., Wang, J., Yi, R., Long, H., Zhou, M., Luo, Q., Zhai, Z., Song, Y., and Qi, S. (2018). The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage. Cell. Mol. Neurobiol. 38, 1245-1252.   DOI
25 Van Meir, E., Sawamura. Y., Diserens, A.C., Ilamou, M.F., and Tribolet, N. (1990). Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res. 50, 6683-6688.
26 Vila-Coro, A.J., Rodriguez-Frade, J.M., Martin, D.A.A., Moreno-Ortiz, M.C., Martinez-A, C., and Mellado, M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13, 1699-1710.   DOI
27 Walentynowicz, K.A., Ochocka, N., Pasierbinska, M., Wojnicki, K., Stepniak, K., Mieczkowski, J., Ciechomska, I.A., and Kaminska, B. (2018). In search for reliable markers of glioma-induced polarization of microglia. Front. Immunol. 9, 1329.   DOI
28 Yadav, V.N., Zamler, D., Baker, G.J., Kadiyala, P., Erdreich-Epstein, A., DeCarvalho, A.C., Mikkelsen, T., Castro, M.G., and Lowenstein, P.R. (2016). CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget 7, 83701-83719.   DOI
29 Yu, K.K., Taylor, J.T., Pathmanaban, O.N., Youshani, A.S., Beyit, D., Dutko- Gwozdz, J., Benson, R., Griffiths, G., Peers, I., Cueppens, P., et al. (2018). High content screening of patient-derived cell lines highlights the potential of non-standard chemotherapeutic agents for the treatment of glioblastoma. PLoS One 13, e0193694.   DOI
30 Zhang, L., Alizadeh, D., Van, H.M., Kortylewski, M., Yu, H., and Badie, B. (2009). Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57, 1458-1467.   DOI
31 Urbanska, K., Sokolowska, J., Szmidt, M., and Sysa, P. (2014). Glioblastoma multiforme: an overview. Contemp. Oncol. (Pozn). 18, 307-312.