Telmisartan Inhibits TNFα-Induced Leukocyte Adhesion by Blocking ICAM-1 Expression in Astroglial Cells but Not in Endothelial Cells

  • Jang, Changhwan (Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University) ;
  • Kim, Jungjin (Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University) ;
  • Kwon, Youngsun (Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University) ;
  • Jo, Sangmee A. (Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University)
  • Received : 2020.07.08
  • Accepted : 2020.07.16
  • Published : 2020.09.01


Telmisartan is an angiotensin-II receptor blocker and acts as a selective modulator of peroxisome proliferator-activated receptor gamma (PPARγ). Several studies have demonstrated that telmisartan ameliorates depression and memory dysfunction and reduces brain inflammation. We hypothesized that the beneficial effects of telmisartan on brain could be due to modulation of the blood-brain barrier (BBB) function. Here, we examined the effect of telmisartan on tumor necrosis factor alpha (TNF-α)-induced expression of intercellular adhesion molecule 1 (ICAM-1) which plays an important role in leukocyte transcytosis through the BBB. Telmisartan blocked TNF-α-induced ICAM-1 expression and leukocyte adhesion in U87MG human glioma cells but showed no effect on human brain microvascular endothelial cells. In U87MG cells, a PPAR antagonist, GW9662 did not block the effect of telmisartan on ICAM1 expression but rather potentiated. Moreover, GW9662 caused no change in TNF-α-induced ICAM-1 expression, suggesting no implication of PPARγ in the telmisartan effect. Further studies showed that telmisartan blocked TNF-α-induced activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factorkappa B (NF-κB). In contrast, inhibitors of JNK, ERK1/2 and NF-κB but not p38, blocked ICAM-1 expression induced by TNF-α. Thus, our findings suggest that the beneficial effect of telmisartan is likely due to the reduction of astrocytic ICAM1 expression and leukocytes adhesion to astrocytes, and that this response was mediated by the inhibition of JNK/ERK1/2/NF-κB activation and in the PPAR-independent manner. In conclusion, this study enhances our understanding of the mechanism by which telmisartan exerts the beneficial brain function.



This work was supported by the 2016 Research fund of Dankook University (R201601384).


  1. Bell, R. D., Winker, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R. and Zlokovic, B. V. (2010) Pericytes control key neurovascular functions and neuronal phenotype in adult brain and during brain aging. Neuron 68, 409-427.
  2. Benicky, J., Sanchez-Lemus, E., Honda, M., Pang, T., Orecna, M., Wang, J., Leng, Y., Chuang, D. and Saavedra, J. M. (2011) Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 36, 857-870.
  3. Benson, S. C., Pershadsinggh, H. A., Ho, C. I., Chittiboyina, A., Desai, P., Pravenec, M., Qi, N., Wang, J., Avery, M. A. and Kurtz, T. W. (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective $PPAR{\gamma}$-modulating activity. Hypertension 43, 993-1002.
  4. Camacho, I. E., Serneels, L., Spittaels, K., Merchiers, P., Dominguez, D. and De Strooper, B. (2004) Peroxiosome proliferator-activated receptor $\gamma$ induces a clearance mechanism for the amyloid-$\beta$ peptide. J. Neurosci. 24, 10908-10917.
  5. Choi, G. Y., Yoon, S. S., Kim, S. E. and Jo, S. A. (2017) KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Sci. Rep. 7, 45005.
  6. Cianchetti, S., Fiorentino, A. D., Colognato, R., Stefano, R. D., Franzoni, F. and Pedrinelli, R. (2008) Anti-inflammatory and antioxidant properties of telmisartan in cultured human umbilical vein endothelial cells. Atherosclerosis 198, 22-28.
  7. Daneman, R., Zhou, L., Kebede, A. A. and Barres, B. A. (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562-566.
  8. Davies, N. M., Kehoe, P. G., Ben-Shiomo, Y. and Martin, R. M. (2011) Association of anti-hypertensive treatments with Alzheimer's disease, vascular dementia, and other dementias. J. Alzheimers Dis. 26, 699-708.
  9. Elkahloun, A. G., Rodriguez, Y., Alaiyed, S., Wenzel, E. and Saavedra, J. M. (2018) Telmisartan protects a microglia cell line from LPS injury beyond AT1 receptor blockade or $PPAR{\gamma}$ activation. Mol. Neurobiol. 56, 3193-3210.
  10. Erdo, F., Denes, L. and de Lange, E. (2017) Age-associated physiological and pathological changes at the blood-brain barrier: a review. J. Cereb. Blood Flow Metab. 37, 4-24.
  11. Hinz, M. and Scheidereit, C. (2014) The $I{\kappa}B$ kinase complex in $NF-{\kappa}B$ regulation and beyond. EMBO Rep. 15, 46-61.
  12. Janelidze, S., Mattsson, N., Stomrud, E., Lindberg, O., Palmqvist, S., Zetterberg, H., Blennow, K. and Hansson, O. (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91, e867-e877.
  13. Kuldo, J. M., Westra, J., Asgeirsdóttir, S. A., Kok, R. J. and Oosterhuis, K. (2005) Differential effects of $NF-{\kappa}B$ and p38 MAPK inhibitors and combinations thereof on $TNF-{\alpha}$ and IL-$1{\beta}$-induced proinflammatory status of endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 289, C1229-C1239.
  14. Lanz, T. V., Ding, Z., Ho, P. P., Luo, J., Agrawal, A. N., Srinagesh, H., Axtell, R., Zhang, H., Platten, M., Wyss-Coray, T. and Steinman, L. (2010) Angiotensin II sustains brain inflammation in mice via TGF-beta. J. Clin. Invest. 120, 2782-2794.
  15. Lawson, C. and Wolf, S. (2009) ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 61, 22-32.
  16. Lee, S. J. and Benveniste, E. N. (1999) Adhesion molecule expression and regulation on cells of the central nervous system. J. Neuroimmunol. 98, 77-88.
  17. Lee, S. J., Drabik, K., Van Wagoner, N. J., Lee, S. J., Choi, C., Dong, Y. and Benveniste, E. N. (2000) ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways. J. Immunol. 165, 4658-4666.
  18. Li, N. C., Lee, A. C., Whitmer, R. A., Kivipelto, M., Lawler, E., Kazis, L. E. and Wolozin, B. (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340, b5465.
  19. Miyoshi, M., Miyano, K., Moriyama, N., Tangiguchi, M. and Watanabe, T. (2008) Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein-1 activation. Eur. J. Neurosci. 27, 343-351.
  20. Ohshima, K., Mogi, M. and Horiuchi, M. (2013) Therapeutic approach for neuronal disease by regulating renin-angiotensin system. Curr. Hypertens. Rev. 9, 99-107.
  21. Ponath, G., Park, C. and Pitt, D. (2018) The role of astrocytes in Multiple sclerosis. Front. Immunol. 9, 217.
  22. Roebuck, K. A. and Finnegan, A. (1999) Regulation of intercellular adhesion molecules-1 (CD54) gene expression. J. Leukoc. Biol. 66, 876-888.
  23. Saavedra, J. M. (2012) Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin. Sci. 123, 567-590.
  24. Saavedra, J. M., Benicky, J. and Zhou, J. (2006) Angiotensin II: multitasking in the brain. J. Hypertens. Suppl. 24, S131-S137.
  25. Song, K. H., Park, J. H., Jo, I., Park, J. Y., Seo, J., Kim, S. A. and Cho, D. H. (2016) Telmisartan attenuates hyperglycemia-exacerbated VCAM-1 expression and monocytes adhesion in $TNF-{\alpha}$-stimulated endothelial cells by inhibiting $IKK{\beta}$ expression. Vasc. Pharmacol. 78, 43-52.
  26. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. and Zlokovic, B. V. (2019) Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21-78.
  27. Torika, N., Asraf, K., Danon, A., Apte, R. N. and Fleisher-Berkovich, S. (2016) Telmisartan modulates glial activation: in vitro and in vivo studies. PLoS ONE 11, e0155823.
  28. Torika, N., Asraf, K., Cohen, H. and Fleisher-Berkovich, S. (2017) Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice. Brain Behav. Immun. 64, 80-90.
  29. Tsukuda, K., Mogi, M., Iwanami, J., Min, L. J., Sakata, A., Jing, F., Iawi, M. and Horiuchi, M. (2009) Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension 54, 782-787.
  30. Verbeek, M. M., Otte-Holler, I., Westphal, J. R., Wesseling, P., Ruiter, D. J. and de Waal, R. M. (1994) Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer's disease. Am. J. Pathol. 144, 104-116.
  31. Villapol, S. and Saavedra, J. M. (2015b) Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens. 28, 289-299.
  32. Wang, J., Ho, L., Chen, L., Zhao, Z., Zhao, W., Qian, X., Humala, N., Seror, I., Bartholomew, S., Rosendorff, C. and Pasinetti, G. M. (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest. 117, 3393-3402.
  33. Wang, Y., Cao, J., Fan, Y., Xie, Y., Xu, Z., Yin, Z., Gao, L. and Wang, C. (2016) Artemisinin inhibits monocyte adhesion to HUVECs through the $NF-{\kappa}B$ and MAPK pathways in vitro. Int. J. Mol. Med. 37, 1567-1575.
  34. Winker, E. A., Sengillo, J. D., Bell, R. D., Wang, J. and Zlokovic, B. V. (2012) Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab. 32, 1841-1852.
  35. Xu, Y., Xu, Y., Wang, Y., Wang, Y., He, L., Jiang, Z., Huang, Z., Liao, H., Li, J., Saavedra, J. M., Zhang, L. and Pang, T. (2015) Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via $CaMKK{\beta}$-dependent AMPK activation. Brain Behav. Immun. 50, 298-313.

Cited by

  1. Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It vol.2021, 2020,
  2. AIM2 deletion enhances blood‐brain barrier integrity in experimental ischemic stroke vol.27, pp.10, 2020,