• Title/Summary/Keyword: Brain capillaries

Search Result 11, Processing Time 0.029 seconds

Effects of Hyulboochucke-tang on the Collagenase-Induced Intracerebral Hemorrhage in Rats (혈부축어탕이 교원효소로 유발된 흰쥐의 뇌출혈에 미치는 영향)

  • Kim, Yong;Seo, Il-Bok;Kim, Soon-Joong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Objectives The purpose of this study was to investigate the effect of Hyulboochucke-tang on the collagenase induced intracerebral hemorrhage in white rats. Methods To identify the effect of the Hyulboochucke-tang on intracerebral hemorrhage, intracerebral hemorrhage was induced in the right caudate nuclei of white rats. For normal group (n=12) and comparative group (n=12), saline was dosed, and vaccum evaporated Hyulboochucke-tang extract was dosed to treatment group (n=12), 3 and 10 days after the collagenase injection, the body weight, the brain weight, the size of hematoma, the size of the area of malacia, the number of apoptotic cell and the change in pathological histology were observed. Results 3 days after the injection, the brain weight(g) was considerably decreased in treatment group (n=12) compared to comparative group (n=12). The brain weight after 10 days of the injection was also considerably decreased in treatment group (n=6) against comparative group (n=6). The cross section(mm) of cerebral malacia after 10 days of the injection was considerably decreased in treatment group (n=6) compared to comparative group (n=6). The number of apoptotic cell in normal intracerebral around the area of malacia did not show considerable change between treatment group and comparative group. 12 days after the injection, the multiplication of gitter cells, astrocyte and newly formed capillaries around the area of malacia was distinct. Conclusions On the basis of these results, We sugggest that Hyulboochucke-tang controls swelling caused by hemorrhage and contributes to absorption of hematoma by multiplication of newly formed capillaries and recovery of damaged cerebral tissue by multiplication of gitter cells and astrocyte.

Blood-Brain Barrier Interfaces and Brain Tumors

  • Lee Sae-Won;Kim Woo-Jean;Park Jeong-Ae;Choi Yoon-Kyung;Kwon Yoo-Wook;Kim Kyu-Won
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.265-275
    • /
    • 2006
  • In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.

Chronic Subdural Hematoma in the Aged, Trauma or Degeneration?

  • Lee, Kyeong-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Chronic subdural hematomas (CSHs) are generally regarded to be a traumatic lesion. It was regarded as a stroke in 17th century, an inflammatory disease in 19th century. From 20th century, it became a traumatic lesion. CSH frequently occur after a trauma, however, it cannot occur when there is no enough subdural space even after a severe head injury. CSH may occur without trauma, when there is sufficient subdural space. The author tried to investigate trends in the causation of CSH. By a review of literature, the author suggested a different view on the causation of CSH. CSH usually originated from either a subdural hygroma or an acute subdural hematoma. Development of CSH starts from the separation of the dural border cell (DBC) layer, which induces proliferation of DBCs with production of neomembrane. Capillaries will follow along the neomembrane. Hemorrhage would occur into the subdural fluid either by tearing of bridge veins or repeated microhemorrhage from the neomembrane. That is the mechanism of hematoma enlargement. Trauma or bleeding tendency may precipitate development of CSH, however, it cannot lead CSH, if there is no sufficient subdural space. The key determinant for development of CSH is a sufficient subdural space, in other words, brain atrophy. The most common and universal cause of brain atrophy is the aging. Modifying Virchow's description, CSH is sometimes traumatic, but most often caused by degeneration of the brain. Now, it is reasonable that degeneration of brain might play pivotal role in development of CSH in the aged persons.

Acoustic Effects on fMRI : A Study on Auditory, Motor and Visual cortices (소음이 뇌기능 영상에 미치는 영향 : 청각, 운동, 시각 피질에 관한 연구)

  • Chung, S.C.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.71-74
    • /
    • 1997
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therefore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding (visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain unctions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Ultrastructural Localization of ZnT3 and Zinc Ions in the Mouse Choroid Plexus (생쥐 맥락얼기에 분포하는 ZnT3 및 zinc 이온의 조직화학적 동정)

  • Kim, Sung-Joo;Kim, Yong-Kuk;Sun, Yuan-Jie;Kim, Soo-Jin;Jeong, Young-Gil;Yu, Yun-Cho;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • We have detected the murine zinc transporter, ZnT3, and zinc ions in the mouse choroid plexus by immunocytochemistry (ICC) and zinc selenium autometallography ($ZnSe^{AMG}$), respectively. BALB/c mice served as experimental animals. Routine floating ABC immunocytochemical procedures were used for the ZnT3 immunocytochemistry, and the mice were injected intraperitoneally (i.p.) with sodium selenide (10 mg/kg) for the zinc selenium autometallography. The choroid plexus showed weak immunoreactivity (Ir) for ZnT3. At high magnification, ZnT3-Ir was seen to be located in the choroid epithelium and the connective tissue of the capillaries. At the EM level, a high electron density of ZnT3-immunoreactivity was restricted to vesicle membranes as well as microvilli in the apical membrane. In contrast, immunostaining of ZnT3 was completely absent in the basolateral plasma membrane and other cell organelles. After silver enhancement, fine $ZnSe^{AMG}$ grains were observed in both the epithelial and endothelial cells of the choroid plexus. Few $ZnSe^{AMG}$ grains present in the cell bodies of the choroid epithelial cells were located in multivesicular bodies. It is striking that very many $ZnSe^{AMG}$ grains were observed in the endothelial cells of the capillaries. These findings establish the choroid plexus as a non-neuronal pool of zinc ions in the brain, although the functional significance of this pool is not clear. The choroid epithelium, however, may play an important role in the transportation of zinc between the CSF and brain tissue.

An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders (늘어난 혈관주위공간: 노화와 신경계질환에서의 임상적의의와 영상의 역할)

  • Younghee Yim;Won-Jin Moon
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.538-558
    • /
    • 2022
  • The perivascular space (PVS) of the brain, also known as Virchow-Robin space, consists of cerebrospinal fluid and connective tissues bordered by astrocyte endfeet. The PVS, in a word, is the route over the arterioles, capillaries, and venules where the substances can move. Although the PVS was identified and described first in the literature approximately over 150 years ago, its importance has been highlighted recently after the function of the waste clearing system of the interstitial fluid and wastes was revealed. The PVS is known to be a microscopic structure detected using T2-weighted brain MRI as dot-like hyperintensity lesions when enlarged. Although until recently regarded as normal with no clinical consequence and ignored in many circumstances, several studies have argued the association of an enlarged PVS with neurodegenerative or other diseases. Many questions and unknown facts about this structure still exist; we can only assume that the normal PVS functions are crucial in keeping the brain healthy. In this review, we covered the history, anatomy, pathophysiology, and MRI findings of the PVS; finally, we briefly touched upon the recent trials to better visualize the PVS by providing a glimpse of the brain fluid dynamics and clinical importance of the PVS.

Study on the pathogenesis of the piglets experimentally infected with Korean isolate of Aujeszky′s disease virus I. Histopathologic and electron microscopic observation (Aujeszky's disease virus 국내분리주 접종자돈의 병리발생에 관한 연구 I. 병리학적 및 전자현미경적 관찰)

  • 조우영;조성환;김재훈;박최규;황의경;조부제;정운선
    • Korean Journal of Veterinary Service
    • /
    • v.19 no.1
    • /
    • pp.1-29
    • /
    • 1996
  • This study was conducted to elucidate the pathogenesis of Aujeszky's disease virus(ADV) by histopathologic examination. The first Korean ADV Isolate, which was isolated from piglets with clinical signs of Aujeszky's disease in Yangsan(YS) county, Kyungnam province, was inoculated into 32 days old piglets with a dose of $10^{5.9}$$TCID_{50}/ml$ through intranasal or intramuscular route. These piglets were sacrificed at intervals of every 24hrs for 8 days. The virulence of YS strain was determined by the observation of clinical signs, gross findings, and histopathologic changes in tissues. The virus recovery test was performed from brain, spleen, lung and tonsil in cell culture. The pathogenesis of YS strain was determined by the observation of histopathologlc lesions in CNS and neuronal tracts. The major clinical signs were fever, anorexia, dyspnea, constipation, tremor, ataxia, circling movement, hindleg paralysis and salivation. The clinical signs were more severe in piglets of the group inoculated intranasally than those of the intramuscularly inoculated gorup. Lymphocytopenia was detected on day 5 to day 6 postinoculation (PI). The ADV was recovered from the tissue homogenates of tonsil, lung, spleen and cerebrum in cell culture. The highest virus titer was detected from tonsil between day 6 and day 7 PI. Reddish sublobar consolidation foci were scattered in the apical and cardiac lobes of lung. Although yellowish necrotic foci were detected in tonsil and liver, hemorrhagic lesions were mainly observed in heart, kidney and lymph nodes. Histopathologically, degeneration and necrosis of nerve cells, nonsuppurative meningoe-ncephalitis, nodular gliosis and perivascular cuffings were observed in CNS. Multifocal fibronecrotic foci were observed in lung, liver, lymph nodes and spleen. The major pathologic changes were detected in the midbrain, pons and medulla oblongata. Eosinophilic intranuclear inclusion bodies were mainly observed in epithelia and /or macrophages of tonsil, liver, lung, spleen and submandibular lymph nodes, and neurons of brain, respectively. Observation of viral particles at various stages of replication were possible from the endothelial cells of the alveolar capillaries and tonsillar crypt epithelia by transmission electron microscope.

  • PDF

Ocular Complications after Injection of Intra-arterial Carboplatin in Gliomas - Report of Three Cases - (신경교종에서 뇌동맥내 Carboplatin주입후 발생한 안구 합병증 - 3례보고 -)

  • Kim, Joo-Han;Lee, Jang-Bo;Chung, Yong-Gu;Park, Jung-Yul;Lee, Hun-Kap;Suh, Jung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.5
    • /
    • pp.638-641
    • /
    • 2001
  • Carboplatin intra-arterial chemotherapy(IAC) has an advantage of increased uptake during the first passage of the drugs through tumor capillaries. Although not common, this type of therapy is known to cause neurological complications, myelosuppression, and ototoxicity. However, the incidence of ocular toxicity is reported to be rare. Eleven of our patients with glioma(Grade II Astrocytoma : 3, Grade III Astrocytoma : 1, Grade IV Astrocytoma : 5, Gliofibroma : 1, Oligodendroglioma : 1) underwent IAC regimen with carboplatin($300mg/m^2$) which were administrated after blood-brain barrier disruption. Of there, 3 patients had ocular complications after supra-ophthalmic IAC injection of carboplatin but fully recovered following steroid therapy. Although our results from IAC seem to be favorable for these patients, we suggest that its complications, such as ocular toxicity, need to be carefully considered prior to treatment.

  • PDF