Browse > Article

Blood-Brain Barrier Interfaces and Brain Tumors  

Lee Sae-Won (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Stroke and neurovascular regulation laboratory)
Kim Woo-Jean (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Neuroprotection research laboratory, Massachusetts General Hospital, Harvard Medical School)
Park Jeong-Ae (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Choi Yoon-Kyung (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kwon Yoo-Wook (Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases)
Kim Kyu-Won (Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Publication Information
Archives of Pharmacal Research / v.29, no.4, 2006 , pp. 265-275 More about this Journal
Abstract
In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.
Keywords
Blood-brain barrier; Brain angiogenesis; Barriergenesis; Tight junctions; Oxygen tension; Glioblastoma;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 19
연도 인용수 순위
1 Bazzoni, G., The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol., 15, 525-530 (2003)   DOI   ScienceOn
2 Breier, G., Breviario, F., Caveda, L., Berthier, R., Schnurch, H., Gotsch, U., Vestweber, D., Risau, W., and Dejana, E., Molecular cloning and expression of murine vascular endothelialcadherin in early stage development of cardiovascular system. Blood, 87, 630-641 (1996)
3 Bunn, H. F. and Poyton, R. O., Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev., 76, 839-885 (1996)   DOI
4 Demeule, M., Regina, A., Jodoin, J., Laplante, A., Dagenais, C., Berthelet, F., Moghrabi, A., and Beliveau, R., Drug transport to the brain: Key roles for the efflux pump p-glycoprotein in the blood-brain barrier. Vas. Pharm., 38, 339-348 (2002)   DOI   ScienceOn
5 Ferrara, N. and Henzel, W. J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun., 161, 851-858 (1989)   DOI   ScienceOn
6 Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S., Occludin: a novel integral membrane protein localizing at tight junctions., J. Cell Biol., 123, 1777-1788 (1993)   DOI
7 Gloor, S. M., Wachtel, M., Bolliger M. F., Ishihara, H., Landmann, R., and Frei, K., Molecular and cellular permeability control at the blood-brain barrier. Brain Res. Brain Res. Rev., 36, 258- 264 (2001)   DOI   ScienceOn
8 Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R., ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin., J. Cell Biol., 141, 199-208 (1998)   DOI
9 Itoh, M., Morita, K., and Tsukita, S. H., Characterization of ZO-2 as a MAGUK family member associated with tight and adherens junctions with a binding affinity to occludin and ${\ajpla}- catenin$. J. Biol. Chem., 274, 5981-5986 (1999b)   DOI   ScienceOn
10 Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L., Cellular and developmental control of $O_2$ homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev., 12, 149-162 (1998)   DOI
11 Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., Raleigh, J. A., Chung, H. Y., Yoo, M. A., and Kim, K. W., Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn., 220, 175-186 (2001)   DOI   ScienceOn
12 Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol., 161, 653-660 (2003)   DOI   ScienceOn
13 Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C., Pericyte loss and microaneurysm formation in PDGF-Bdificient mice. Science 277., 242-245 (1997)   DOI   ScienceOn
14 Maltepe, E. and Simon, M.C., Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J. Mo.l Med., 76, 391- 401 (1998)   DOI
15 Nagamatsu, S., Kornhauser, J. M., Burant, C. F., Seino, S., Mayo, K. E., and Bell, G. I., Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J. Biol. Chem., 267, 467- 472 (1992)
16 Pardridge, W. M., Boado, R. J., and Farrell, C. R., Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem., 265, 18035-18040 (1990)
17 Plate, K. H., Mechanism of angiogenesis in the brain. J. Neuropathol. Exp. Neurol., 58, 313-320 (1999)   DOI
18 Risau, W., Mechanisms of angiogenesis. Nature, 386, 671-674 (1997)   DOI   ScienceOn
19 Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S., and Bell, B. A., Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry, 72, 262-265 (2002)   DOI   ScienceOn
20 Sandercoe, T. M., Geller, S. F., Hendrickson, A. E., Stone, J., and Provis, J. M., VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia. J. Comp. Neurol., 462, 42-54 (2003)   DOI   ScienceOn
21 Savettieri, G., Di Liegro, I., Catania, C., Licata, L., Pitarresi, G.L., D'Agostino, S., Schiera, G., De Caro, V., Giandalia, G., Giannola, L. I., and Cestelli, A., Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport 11, 1081-1084 (2000)   DOI   ScienceOn
22 Schiera, G., Bono, E., Raffa, M. P., Gallo, A., Pitarresi, G. L., Di Liegro, I., and Savettieri, G., Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J. Cell Mol. Med., 7, 165-170 (2003)   DOI
23 Zhong, Y., Saitoh, T., Minase, T., Sawada, N., Enomoto, K., and Mori, M., Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J. Cell Biol., 120, 477-483 (1993)   DOI
24 Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S., Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J. Cell Biol., 145, 579-588 (1999)   DOI
25 Petty M. A. and Wettstein, J. G., Elements of cerebral microvascular ischaemia. Brain Res. Brain Res. Rev., 36, 23- 34 (2001)   DOI   ScienceOn
26 Richards, L. J., Kilpatrick, T. J., Dutton, R., Tan, S. S., Gearing, D. P., Bartlett, P. F., and Murphy, M., Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur. J. Neurosci., 8, 291-299 (1996)   DOI   ScienceOn
27 Takano, S., Yoshii, Y., Kondo, S., Suzuki, H., Maruno, T., Shirai, S., and Nose, T., Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res., 56, 2185-2190 (1996)
28 Wolburg, H., Wolburg-Buchholz, K., Kraus, J., Rascher- Eggstein, G., Liebner, S., Hamm, S., Duffner, F., Grote, E. H., Risau, W., and Engelhardt, B., Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol., 105, 586-592 (2003)
29 Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-439 (1996)   DOI   ScienceOn
30 Harik, S. I., Kalaria, R. N., Andersson, L., Lundahl, P., and Perry, G., Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J. Neurosci., 10, 3862-3872 (1990)   DOI
31 Matter, K. and Balda, M. S., Holey barrier: claudins and the regulation of brain endothelial permeability. J. Cell Biol., 161, 459-460 (2003)   DOI   ScienceOn
32 Nicchia, G. P., Frigeri, A., Liuzzi, G. M., and Svelto, M., Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J., 17, 1508-1510 (2003)   DOI
33 Ramsauer, M., Krause, D., and Dermietzel, R., Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J., 16, 1274-1276 (2002)   DOI
34 Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M. G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D. M., and Ward, P. A., Dejana, E., Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl. Acad. Sci. U.S.A., 96, 9815-9820 (1999)
35 Maher, F., Vannucci, S. J., and Simpson, I. A., Glucose transporter proteins in brain. FASEB J., 8, 1003-1011 (1994)   DOI
36 Rieckmann, P. and Engelhardt, B., Building up the blood-brain barrier. Nat. Med., 9, 828-829 (2003)   DOI   ScienceOn
37 Folkman, J., Fundamental concepts of the angiogenic process. Curr. Mol. Med., 3, 643-651 (2003)   DOI   ScienceOn
38 Dehouck, M. P., Vigne, P., Torpier, G., Breittmayer, J. P., Cecchelli, R., and Frelin, C., Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J. Cereb. Blood Flow. Metab., 17, 464-469 (1997)   DOI
39 Staddon, J. M. and Rubin, L. L., Cell adhesion, cell junctions and the blood-brain barrier. Curr. Opin. Neurobiol., 6, 622- 627 (1996)   DOI   ScienceOn
40 Wang, W., Dentler, W. L., and Borchardt, R. T., VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol., 280, H434-H440 (2001)   DOI
41 Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T., and Tsukita, S., Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol., 154, 491-497 (2001)   DOI   ScienceOn
42 McCarty, J. H., Monahan-Earley, R. A., Brown, L. F., Keller, M., Gerhardt, H., Rubin, K., Shani, M., Dvorak, H. F., Wolburg, H., Bader, B. L., Dvorak, A. M., and Hynes, R. O., Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol. Cell Biol., 22, 7667-7677 (2002)   DOI
43 Mi, H., Haeberle, H., and Barres, B. A., Induction of astrocyte differentiation by endothelial cells. J. Neurosci., 21, 1538- 1547 (2001)   DOI
44 Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res., 114, 161-169 (1999)   DOI   ScienceOn
45 Papadopoulos, M. C., Saadoun, S., Woodrow, C. J., Davies, D. C., Costa-Martins, P., Moss, R. F., Krishna, S., and Bell, B. A., Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol. Appl. Neurobiol., 27, 384-395 (2001)   DOI
46 Utsumi, H., Chiba, H., Kamimura, Y., Osanai, M., Igarashi, Y., Tobioka, H., Mori, M., and Sawada, N., Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB. Am. J. Physiol. Cell Physiol., 279, C361-C368 (2000)   DOI
47 Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D., Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eu.r J. Pharm. Sci., 12, 215-222 (2001)   DOI   ScienceOn
48 Guerin, C., Laterra, J., Hruban, R. H., Brem, H., Drewes, L. R., and Goldstein, G. W., The glucose transporter and bloodbrain barrier of human brain tumors. Ann. Neurol., 28, 758- 765 (1990)   DOI   ScienceOn
49 Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E. H., Kalbacher, H., and Wolburg, H., Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiform. Acta Neuropathol., 100, 323-331 (2000)   DOI
50 Fried, B. M. and Buckley, R. C., Primary carcinoma of the lungs. Arch. Pathol., 9, 483-527 (1930)
51 Huber, J. D., Egleton, R. D., and Davis, T. P., Molecular physiology and pathophysiology of tight junctions in the bloodbrain barrier. Trends Neurosci., 24, 719-725 (2001)   DOI   ScienceOn
52 Saitou, M., Furuse, M., Sasaki, H., Schulzke, J. D., Fromm, M., Takano, H., Noda, T., and Tsukita, S., Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell, 11, 4131-4142 (2000)   DOI
53 Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D., and Risau, W., Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer, 59, 520-529 (1994)   DOI   ScienceOn
54 Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55-60 (1997)   DOI   ScienceOn
55 Verkman, A. S., Aquaporin water channels and endothelial cell function. J. Anat., 200, 617-627 (2002)   DOI   ScienceOn
56 Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 200, 629-638 (2002)   DOI   ScienceOn
57 Cordon-Cardo, C., O'Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., and Bertino, J. R., Multidrugresistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Pro.c Natl. Acad. Sci. U.S.A., 86, 695-698 (1989)
58 Kaur, B., Khwaja, F. W., Severson, E. A., Mathenyh, S. L., Brat, D. J., and Van Meir, E. V., Hypoxia and the hypoxia-induciblefactor pathway in glioma growth and angiogenesis. Neurooncol., 7, 134-153 (2005)
59 Nag, S., The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol. Med., 8, 38- 44 (2002)   DOI   ScienceOn
60 Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C., Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem., 37, 159-164 (1989)   DOI   ScienceOn
61 Schnadelbach, O., Blaschuk, O. W., Symonds, M., Gour, B. J., Doherty, P., and Fawcett, J. W., N-cadherin influences migration of oligodendrocytes on astrocyte monolayers. Mol. Cell Neurosci., 15, 288-302 (2000)   DOI   ScienceOn
62 Bauer, H. C. and Bauer, H., Neural induction of the blood-brain barrier: still an enigma. Cell. Mol Neurobiology 20, 13-28 (2000)   DOI   ScienceOn
63 Engelhardt, B., Development of the blood-brain barrier. Cell Tissue Res., 314, 119-129 (2003)   DOI
64 Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E., Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J .Cell Biol., 142, 117- 127 (1998)   DOI
65 Zhang, Y., Porat, R. M., Alon, T., Keshet, E., and Stone, J., Tissue oxygen levels control astrocyte movement and differentiation in developing retina. Brain Res. Dev. Brain Res., 118, 135-145 (1999)   DOI   ScienceOn
66 Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., and Risau, W., A. Ullrich, High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, 835-846 (1993)   DOI   ScienceOn
67 Zhang, M. and Olsson, Y., Hematogenous metastases of the human brain-characteristics of peritumoral brain changes. J. Neurooncol., 35, 81-89 (1997)   DOI
68 Kandel, E. R., Schwartz, J. H., and Jessell, T. M., Appendix B, Ventricular organization of cerebrospinal fluid: Blood-brain barrier, brain edema, and hydrocephalus, in: Principles of neural science (4th Eds). McGraw-Hill Companies, U.S.A., pp.1288-1301 (2000)
69 Risau, W. and Wolburg, H., Development of the BBB. Trends Neurosci., 13, 174-178 (1990)   DOI   ScienceOn
70 Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S. W., Kim, C. W., and Kim, K. W., Oxygen tension regulates the maturation of the blood-brain barrier. Biochem. Biophys. Res. Commun., 290, 325-331 (2002)   DOI   ScienceOn
71 Manley, G. T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A. W., Chan, P., and Verkman, A. S., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med., 6, 159-163 (2000)   DOI   ScienceOn
72 Palmer, T. D., Willhoite, A. R., and Gage, F. H., Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol., 425, 479-494 (2000)   DOI   ScienceOn
73 Valter, M. M., Hugel, A., Huang, H. J., Cavenee, W. K., Wiestler, O. D., Pietsch, T. , and Wernert, N., Expression of the Ets-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis. Cancer Res., 59, 5608-5614 (1999)
74 Rascher, G., Fischmann, A., Kroger, S., Duffner, F., Grote, E. H., and Wolburg, H., Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol. (Berl), 104, 85-91 (2002)   DOI   ScienceOn
75 Enge, M., Bjarnegard, M., Gerhardt, H., Gustafsson, E., Kalen, M., Asker, N., Hammes, H. P., Shani, M., Fassler, R., and Betsholtz, C., Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J., 21, 4307-4316 (2002)   DOI   ScienceOn
76 Minagar, A., Long, A., Ma, T., Jackson, T. H., Kelley, R. E., Ostanin, D. V., Sasaki, M., Warren, A. C., Jawahar, A., Cappell, B., and Alexander, J. S., Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium, 10, 299-307 (2003)   DOI   ScienceOn
77 Verkman, A. S. and Mitra, A. K., Structure and function of aquaporin water channels. Am. J. Pathology, 78, F13-F28 (2001)
78 Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res., 114, 161-169 (1999)   DOI   ScienceOn
79 Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A., and Krishna, S., Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer, 87, 621- 623 (2002)   DOI   ScienceOn
80 Small, R. K., Watkins, B. A., Munro, P. M., and Liu, D., Functional properties of retinal Muller cells following transplantation to the anterior eye chamber. Glia, 7, 158-169 (1993)   DOI
81 Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J., Cingulin, a new peripheral component of tight junctions. Nature, 333, 272-276 (1988)   DOI   ScienceOn
82 Gelman, I. H., The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development. Front. Biosci., 7, d1782- d1797 (2002)   DOI
83 Duelli, R. and Kuschinsky, W., Brain glucose transporters: relationship to local energy demand. News Physiol. Sci., 16, 71-76 (2001)
84 Janzer, R. C. and Raff, M. C., Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325, 253-257 (1987)   DOI   ScienceOn
85 Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S., Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol., 141, 1539-1550 (1998)   DOI
86 Itoh, M., Furuse, M., Morita, K., Kubota, K., Saitou, M., and Tsukita, S., Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol., 147, 1351-1363 (1999a)   DOI
87 Kleihues P. and Cavanee W. K., (Eds.), Tumors of the Nervous System. World Health Organization Classification of Tumors. Pathology and Genetics. IARC Press, Vol 1., Lyon (2000)
88 Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E., and Pessin, J. E., Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J. Biol. Chem., 263, 15594-15601 (1988)
89 Tran, N. D., Correale, J., Schreiber, S. S., and Fisher, M., Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke, 30, 1671-1678 (1999)   DOI   ScienceOn
90 Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 200, 629-638 (2002)   DOI   ScienceOn
91 Hirase, T., Staddon, J. M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Tsukita, S., and Rubin, L. L., Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci., 110, 1603-1613 (1997)
92 Breier, G., Albrecht, U., Sterrer, S., and Risau, W., Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development, 114, 521-532 (1992)
93 Genbacev, O., Zhou, Y., Ludlow, J. W., and Fisher, S. J., Regulation of human placental development by oxygen tension. Science, 277, 1669-1672 (1997)   DOI   ScienceOn
94 Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, and Y. J., Kim, K. W., SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med., 9, 900-906 (2003)   DOI   ScienceOn
95 Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J., Vascular-specific growth factors and blood vessel formation. Nature, 407, 242-248 (2000)   DOI   ScienceOn
96 Lampugnani, M. G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., and Dejana, E., The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol., 129, 203-217 (1995)   DOI
97 Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B., and Gardner, T. W., Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem., 274, 23463-23467 (1999)   DOI
98 Collins, V. P., Cellular mechanisms targeted during astrocytoma progression., Cancer Lett., 188, 1-7 (2002)   DOI   ScienceOn
99 Fanning, A. S., Jameson, B. J., Jesaitis, L. A., and Anderson, J. M., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem., 273, 29745-29753 (1998)   DOI
100 Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N., Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem. Biophys. Res. Commu., n 261, 108-112 (1999)
101 Reuss, B., Dono, R., and Unsicker, K., Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci., 23, 6404-6412 (2003)   DOI
102 Wolburg, H. and Lippoldt, A., Tight junctions of the blood-brain barrier: Development, composition and regulation. Vas. Pharmacol., 38, 323-337 (2002)   DOI   ScienceOn