DOI QR코드

DOI QR Code

An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders

늘어난 혈관주위공간: 노화와 신경계질환에서의 임상적의의와 영상의 역할

  • Younghee Yim (Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Won-Jin Moon (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine)
  • 임영희 (중앙대학교 의과대학 중앙대병원 영상의학과) ;
  • 문원진 (건국대학교 의학전문대학원 건국대학교병원 영상의학과)
  • Received : 2022.04.11
  • Accepted : 2022.05.05
  • Published : 2022.05.01

Abstract

The perivascular space (PVS) of the brain, also known as Virchow-Robin space, consists of cerebrospinal fluid and connective tissues bordered by astrocyte endfeet. The PVS, in a word, is the route over the arterioles, capillaries, and venules where the substances can move. Although the PVS was identified and described first in the literature approximately over 150 years ago, its importance has been highlighted recently after the function of the waste clearing system of the interstitial fluid and wastes was revealed. The PVS is known to be a microscopic structure detected using T2-weighted brain MRI as dot-like hyperintensity lesions when enlarged. Although until recently regarded as normal with no clinical consequence and ignored in many circumstances, several studies have argued the association of an enlarged PVS with neurodegenerative or other diseases. Many questions and unknown facts about this structure still exist; we can only assume that the normal PVS functions are crucial in keeping the brain healthy. In this review, we covered the history, anatomy, pathophysiology, and MRI findings of the PVS; finally, we briefly touched upon the recent trials to better visualize the PVS by providing a glimpse of the brain fluid dynamics and clinical importance of the PVS.

혈관주위공간(perivascular space; 이하 PVS)는 뇌 실질을 관통하는 세동맥 둘러싸고 있는 공간으로, 최근에는 별아교세포의 종족(astrocyte endfoot)에 의해 가장 바깥쪽이 경계지워지는, 체액, 세포, 결합조직으로 구성된 혈관벽내, 혈관벽 주위의 구획을 모두 아우르는 개념으로 이해하고 있다. 정상적으로는 현미경적 해부학 구조물이지만 이 구조물이 늘어나게 되면 MRI T1 혹은 T2 이미지에서 확인할 수 있게 된다. PVS의 명확한 실체나 임상적인 의의에 대해서는 아직 분명치 않은 부분이 많이 있지만 PVS의 확장(enlarged PVS; 이하 EPVS)은 다양한 퇴행성 뇌질환 뿐만 아니라 뇌출혈 및 외상성 뇌손상, 당뇨성 신질환 같은 다양한 질병과의 연관성이 있다는 연구 결과들이 발표되고 있다. 이번 종설에서는 PVS와 EPVS가 가지는 임상적 의의와 병태 생리에 대한 최근 문헌을 고찰하고, MRI를 이용한 정성적 평가 및 최적화에 대해 논의해 보고자 한다.

Keywords

Acknowledgement

This study was supported by the Korea Health Technology R&D Project through the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number HI21C0222).

References

  1. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838  https://doi.org/10.1016/S1474-4422(13)70124-8
  2. Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 2021;63:1581-1597  https://doi.org/10.1007/s00234-021-02718-7
  3. Heier LA, Bauer CJ, Schwartz L, Zimmerman RD, Morgello S, Deck MD. Large Virchow-Robin spaces: MR-clinical correlation. AJNR Am J Neuroradiol 1989;10:929-936 
  4. Woollam DH, Millen JW. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat 1955;89:193-200 
  5. Weed LH. The absorption of cerebrospinal fluid into the venous system. Am J Anat 1923;31:191-221  https://doi.org/10.1002/aja.1000310302
  6. Krahn V. The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl) 1982;164:257-263  https://doi.org/10.1007/BF00318509
  7. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990;170:111-123 
  8. Pollock H, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 1997;191(Pt 3):337-346  https://doi.org/10.1046/j.1469-7580.1997.19130337.x
  9. Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 2016;131:725-736  https://doi.org/10.1007/s00401-016-1555-z
  10. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol 2018;596:445-475  https://doi.org/10.1113/JP275105
  11. Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982;32:871-876  https://doi.org/10.1212/WNL.32.8.871
  12. Weed LH. Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 1914;31:21-49 
  13. Weed LH. Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 1914;31:51-91 
  14. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJR Am J Roentgenol 1988;151:551-558  https://doi.org/10.2214/ajr.151.3.551
  15. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics 2007;27:1071-1086  https://doi.org/10.1148/rg.274065722
  16. Zhu YC, Dufouil C, Soumare A, Mazoyer B, Chabriat H, Tzourio C. High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis 2010;22:663-672  https://doi.org/10.3233/JAD-2010-100378
  17. Ferguson SC, Blane A, Perros P, McCrimmon RJ, Best JJ, Wardlaw J, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes 2003;52:149-156  https://doi.org/10.2337/diabetes.52.1.149
  18. Maclullich AM, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 2004;75:1519-1523  https://doi.org/10.1136/jnnp.2003.030858
  19. Patankar TF, Mitra D, Varma A, Snowden J, Neary D, Jackson A. Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. AJNR Am J Neuroradiol 2005;26:1512-1520 
  20. Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat 2015;227:702-703  https://doi.org/10.1111/joa.12381
  21. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012;4:147ra111 
  22. Smith AJ, Verkman AS. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation? FASEB J 2018;32:543-551  https://doi.org/10.1096/fj.201700999
  23. Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat 2017;11:101 
  24. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 2018;135:387-407  https://doi.org/10.1007/s00401-018-1812-4
  25. Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke 2015;10:376-381  https://doi.org/10.1111/ijs.12054
  26. Aribisala BS, Wiseman S, Morris Z, Valdes-Hernandez MC, Royle NA, Maniega SM, et al. Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke 2014;45:605-607  https://doi.org/10.1161/STROKEAHA.113.004059
  27. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner's guide. Neurochem Res 2015;40:2583-2599  https://doi.org/10.1007/s11064-015-1581-6
  28. Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, et al. Convective influx/ glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 2018;136:139-152  https://doi.org/10.1007/s00401-018-1862-7
  29. Weller RO, Kida S, Zhang ET. Pathways of fluid drainage from the brain--morphological aspects and immunological significance in rat and man. Brain Pathol 1992;2:277-284  https://doi.org/10.1111/j.1750-3639.1992.tb00704.x
  30. Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer's disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 2003;29:106-117  https://doi.org/10.1046/j.1365-2990.2003.00424.x
  31. Weller RO, Nicoll JA. Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 2003;25:611-616  https://doi.org/10.1179/016164103101202057
  32. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 2008;34:131-144  https://doi.org/10.1111/j.1365-2990.2007.00926.x
  33. Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front Aging Neurosci 2019;11:1 
  34. Groeschel S, Chong WK, Surtees R, Hanefeld F. Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 2006;48:745-754  https://doi.org/10.1007/s00234-006-0112-1
  35. Adams HH, Cavalieri M, Verhaaren BF, Bos D, van der Lugt A, Enzinger C, et al. Rating method for dilated Virchow-Robin spaces on magnetic resonance imaging. Stroke 2013;44:1732-1735  https://doi.org/10.1161/STROKEAHA.111.000620
  36. Ding J, Sigurdsson S, Jonsson PV, Eiriksdottir G, Charidimou A, Lopez OL, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-Reykjavik study. JAMA Neurol 2017;74:1105-1112  https://doi.org/10.1001/jamaneurol.2017.1397
  37. Bown CW, Carare RO, Schrag MS, Jefferson AL. Physiology and clinical relevance of enlarged perivascular spaces in the aging brain. Neurology 2022;98:107-117  https://doi.org/10.1212/WNL.0000000000013077
  38. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010;41:450-454  https://doi.org/10.1161/STROKEAHA.109.564914
  39. Rawal S, Croul SE, Willinsky RA, Tymianski M, Krings T. Subcortical cystic lesions within the anterior superior temporal gyrus: a newly recognized characteristic location for dilated perivascular spaces. AJNR Am J Neuroradiol 2014;35:317-322  https://doi.org/10.3174/ajnr.A3669
  40. McArdle DJT, Lovell TJH, Lekgabe E, Gaillard F. Opercular perivascular cysts: a proposed new subtype of dilated perivascular spaces. Eur J Radiol 2020;124:108838 
  41. Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol 2014;49:307-313  https://doi.org/10.1097/RLI.0000000000000027
  42. Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 2015;39:224-231  https://doi.org/10.1159/000375153
  43. Riba-Llena I, Jimenez-Balado J, Castane X, Girona A, Lopez-Rueda A, Mundet X, et al. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke 2018;49:1279-1281  https://doi.org/10.1161/STROKEAHA.118.020163
  44. Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, et al. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: a 4D flow MRI study. J Cereb Blood Flow Metab 2017;37:2149-2158  https://doi.org/10.1177/0271678X16661340
  45. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985) 2008;105:1652-1660  https://doi.org/10.1152/japplphysiol.90549.2008
  46. Benveniste H, Nedergaard M. Cerebral small vessel disease: a glymphopathy? Curr Opin Neurobiol 2022;72:15-21  https://doi.org/10.1016/j.conb.2021.07.006
  47. Charidimou A, Jaunmuktane Z, Baron JC, Burnell M, Varlet P, Peeters A, et al. White matter perivascular spaces: an MRI marker in pathology-proven cerebral amyloid angiopathy? Neurology 2014;82:57-62  https://doi.org/10.1212/01.wnl.0000438225.02729.04
  48. Koo HW, Jo KI, Yeon JY, Kim JS, Hong SC. Clinical features of high-degree centrum semiovale-perivascular spaces in cerebral amyloid angiopathy. J Neurol Sci 2016;367:89-94  https://doi.org/10.1016/j.jns.2016.05.040
  49. Ghali MGZ, Marchenko V, Ya,sargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020;144:105022 
  50. Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018;114:1462-1473  https://doi.org/10.1093/cvr/cvy113
  51. Banerjee G, Kim HJ, Fox Z, Jager HR, Wilson D, Charidimou A, et al. MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden. Brain 2017;140:1107-1116  https://doi.org/10.1093/brain/awx003
  52. Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing 2015;12:2 
  53. Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 1993;23:2375-2378  https://doi.org/10.1002/eji.1830230950
  54. Rouhl RP, Damoiseaux JG, Lodder J, Theunissen RO, Knottnerus IL, Staals J, et al. Vascular inflammation in cerebral small vessel disease. Neurobiol Aging 2012;33:1800-1806  https://doi.org/10.1016/j.neurobiolaging.2011.04.008
  55. Wiseman S, Marlborough F, Doubal F, Webb DJ, Wardlaw J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis. Cerebrovasc Dis 2014;37:64-75  https://doi.org/10.1159/000356789
  56. Wiseman SJ, Bastin ME, Jardine CL, Barclay G, Hamilton IF, Sandeman E, et al. Cerebral small vessel disease burden is increased in systemic lupus erythematosus. Stroke 2016;47:2722-2728  https://doi.org/10.1161/STROKEAHA.116.014330
  57. Swardfager W, Yu D, Ramirez J, Cogo-Moreira H, Szilagyi G, Holmes MF, et al. Peripheral inflammatory markers indicate microstructural damage within periventricular white matter hyperintensities in Alzheimer's disease: a preliminary report. Alzheimers Dement (Amst) 2017;7:56-60  https://doi.org/10.1016/j.dadm.2016.12.011
  58. Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond) 2017;131:2503-2524  https://doi.org/10.1042/CS20170981
  59. Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol 2016;79:591-604  https://doi.org/10.1002/ana.24607
  60. Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci (Lond) 2017;131:425-437  https://doi.org/10.1042/CS20160604
  61. Damodarasamy M, Vernon RB, Pathan JL, Keene CD, Day AJ, Banks WA, et al. The microvascular extracellular matrix in brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids Barriers CNS 2020;17:60 
  62. Zabel M, Schrag M, Crofton A, Tung S, Beaufond P, Van Ornam J, et al. A shift in microglial β-amyloid binding in Alzheimer's disease is associated with cerebral amyloid angiopathy. Brain Pathol 2013;23:390-401  https://doi.org/10.1111/bpa.12005
  63. Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2017;88:1157-1164  https://doi.org/10.1212/WNL.0000000000003746
  64. Schrag M, Crofton A, Zabel M, Jiffry A, Kirsch D, Dickson A, et al. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer's disease. J Alzheimers Dis 2011;24:137-149  https://doi.org/10.3233/JAD-2010-101503
  65. Charidimou A, Hong YT, Jager HR, Fox Z, Aigbirhio FI, Fryer TD, et al. White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke 2015;46:1707-1709  https://doi.org/10.1161/STROKEAHA.115.009090
  66. Ramirez J, Berezuk C, McNeely AA, Scott CJ, Gao F, Black SE. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study. J Alzheimers Dis 2015;43:415-424  https://doi.org/10.3233/JAD-132528
  67. Smeijer D, Ikram MK, Hilal S. Enlarged perivascular spaces and dementia: a systematic review. J Alzheimers Dis 2019;72:247-256  https://doi.org/10.3233/JAD-190527
  68. Si X, Pu J, Zhang B. Structure, distribution, and genetic profile of α-synuclein and their potential clinical application in Parkinson's disease. J Mov Disord 2017;10:69-79  https://doi.org/10.14802/jmd.16061
  69. Xie F, Gao X, Yang W, Chang Z, Yang X, Wei X, et al. Advances in the research of risk factors and prodromal biomarkers of Parkinson's disease. ACS Chem Neurosci 2018;10:973-990  https://doi.org/10.1021/acschemneuro.8b00520
  70. Si XL, Gu LY, Song Z, Zhou C, Fang Y, Jin CY, et al. Different perivascular space burdens in idiopathic rapid eye movement sleep behavior disorder and Parkinson's disease. Front Aging Neurosci 2020;12:580853 
  71. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng 2013;6:7 
  72. Kilsdonk ID, Steenwijk MD, Pouwels PJ, Zwanenburg JJ, Visser F, Luijten PR, et al. Perivascular spaces in MS patients at 7 Tesla MRI: a marker of neurodegeneration? Mult Scler 2015;21:155-162  https://doi.org/10.1177/1352458514540358
  73. Conforti R, Cirillo M, Saturnino PP, Gallo A, Sacco R, Negro A, et al. Dilated Virchow-Robin spaces and multiple sclerosis: 3 T magnetic resonance study. Radiol Med 2014;119:408-414  https://doi.org/10.1007/s11547-013-0357-9
  74. Cavallari M, Egorova S, Healy BC, Palotai M, Prieto JC, Polgar-Turcsanyi M, et al. Evaluating the association between enlarged perivascular spaces and disease worsening in multiple sclerosis. J Neuroimaging 2018;28:273-277  https://doi.org/10.1111/jon.12490
  75. Chan ST, Mercaldo ND, Ravina B, Hersch SM, Rosas HD. Association of dilated perivascular spaces and disease severity in patients with Huntington disease. Neurology 2021;96:e890-e894  https://doi.org/10.1212/WNL.0000000000011121
  76. Penton AA, Lau H, Babikian VL, Shulman J, Cervantes-Arslanian A, Gangadhara S, et al. Chronic kidney disease as risk factor for enlarged perivascular spaces in patients with stroke and relation to racial group. Stroke 2020;51:3348-3351  https://doi.org/10.1161/STROKEAHA.119.028688
  77. Choi EY, Park YW, Lee M, Kim M, Lee CS, Ahn SS, et al. Magnetic resonance imaging-visible perivascular spaces in the basal ganglia are associated with the diabetic retinopathy stage and cognitive decline in patients with type 2 diabetes. Front Aging Neurosci 2021;13:666495 
  78. Hilal S, Tan CS, Adams HHH, Habes M, Mok V, Venketasubramanian N, et al. Enlarged perivascular spaces and cognition: a meta-analysis of 5 population-based studies. Neurology 2018;91:e832-e842  https://doi.org/10.1212/WNL.0000000000006079
  79. Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of enlarged perivascular spaces and measures of small vessel and alzheimer disease. Neurology 2021;96:e193-e202  https://doi.org/10.1212/WNL.0000000000011046
  80. Zong X, Lian C, Jimenez J, Yamashita K, Shen D, Lin W. Morphology of perivascular spaces and enclosed blood vessels in young to middle-aged healthy adults at 7T: dependences on age, brain region, and breathing gas. Neuroimage 2020;218:116978 
  81. Cai K, Tain R, Das S, Damen FC, Sui Y, Valyi-Nagy T, et al. The feasibility of quantitative MRI of perivascular spaces at 7T. J Neurosci Methods 2015;256:151-156  https://doi.org/10.1016/j.jneumeth.2015.09.001
  82. Ballerini L, Booth T, Valdes Hernandez MDC, Wiseman S, Lovreglio R, Munoz Maniega S, Computational quantification of brain perivascular space morphologies: associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. Neuroimage Clin 2020;25:102120 
  83. Ballerini L, Lovreglio R, Valdes Hernandez MDC, Ramirez J, MacIntosh BJ, Black SE, et al. Perivascular spaces segmentation in brain MRI using optimal 3D filtering. Sci Rep 2018;8:2132 
  84. Niazi M, Karaman M, Das S, Zhou XJ, Yushkevich P, Cai K. Quantitative MRI of perivascular spaces at 3T for early diagnosis of mild cognitive impairment. AJNR Am J Neuroradiol 2018;39:1622-1628  https://doi.org/10.3174/ajnr.A5734
  85. Schwartz DL, Boespflug EL, Lahna DL, Pollock J, Roese NE, Silbert LC. Autoidentification of perivascular spaces in white matter using clinical field strength T1 and FLAIR MR imaging. Neuroimage 2019;202:116126 
  86. Piantino J, Boespflug EL, Schwartz DL, Luther M, Morales AM, Lin A, et al. Characterization of MR imaging-visible perivascular spaces in the white matter of healthy adolescents at 3T. AJNR Am J Neuroradiol 2020;41:2139-2145  https://doi.org/10.3174/ajnr.A6789
  87. Dubost F, Yilmaz P, Adams H, Bortsova G, Ikram MA, Niessen W, et al. Enlarged perivascular spaces in brain MRI: automated quantification in four regions. Neuroimage 2019;185:534-544  https://doi.org/10.1016/j.neuroimage.2018.10.026
  88. Dubost F, Adams H, Bortsova G, Ikram MA, Niessen W, Vernooij M, et al. 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI. Med Image Anal 2019;51:89-100  https://doi.org/10.1016/j.media.2018.10.008
  89. Huang P, Zhu Z, Zhang R, Wu X, Jiaerken Y, Wang S, et al. Factors associated with the dilation of perivascular space in healthy elderly subjects. Front Aging Neurosci 2021;13:624732 
  90. Sim JE, Park MS, Shin HY, Jang HS, Won HH, Seo SW, et al. Correlation between hippocampal enlarged perivascular spaces and cognition in non-dementic elderly population. Front Neurol 2020;11:542511 
  91. Loos CM, Klarenbeek P, van Oostenbrugge RJ, Staals J. Association between perivascular spaces and progression of white matter hyperintensities in lacunar stroke patients. PLoS One 2015;10:e0137323 
  92. Ciampa I, Operto G, Falcon C, Minguillon C, Castro de Moura M, Pineyro D, et al. Genetic predisposition to Alzheimer's disease is associated with enlargement of perivascular spaces in centrum semiovale region. Genes (Basel) 2021;12:825 
  93. Kim HJ, Cho H, Park M, Kim JW, Ahn SJ, Lyoo CH, et al. MRI-visible perivascular spaces in the centrum semiovale are associated with brain amyloid deposition in patients with Alzheimer disease-related cognitive impairment. AJNR Am J Neuroradiol 2021;42:1231-1238  https://doi.org/10.3174/ajnr.A7155
  94. Tsai HH, Pasi M, Tsai LK, Huang CC, Chen YF, Lee BC, et al. Centrum semiovale perivascular space and amyloid deposition in spontaneous intracerebral hemorrhage. Stroke 2021;52:2356-2362  https://doi.org/10.1161/STROKEAHA.120.032139
  95. Duperron MG, Tzourio C, Schilling S, Zhu YC, Soumare A, Mazoyer B, et al. High dilated perivascular space burden: a new MRI marker for risk of intracerebral hemorrhage. Neurobiol Aging 2019;84:158-165  https://doi.org/10.1016/j.neurobiolaging.2019.08.031
  96. Yang E, Gonuguntla V, Moon WJ, Moon Y, Kim HJ, Park M, et al. Direct rating estimation of enlarged perivascular spaces (Epvs) in brain MRI using deep neural network. Appl Sci 2021;11:9398