• 제목/요약/키워드: Brain Model

검색결과 1,203건 처리시간 0.027초

영어학습 유형별 뇌기능 활성화에 대한 정량뇌파연구 (Quantitative EEG research by the brain activities on the various fields of the English education)

  • 권형규
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.541-550
    • /
    • 2009
  • 본 연구는 영어학습 영역별 (듣기쓰기능력, 단어수준, 스피킹, 단어기억, 리스닝) 성취도에 따른 대뇌피질 내의 뇌기능 활성화에 대한 관련성을 규명한 것이다. 좌뇌 기반으로 알려진 영어학습에 대한 우뇌적 요인에 대한 연구들이 진행되었다. 뇌기능 영상화 중에서 정량뇌파분석를 사용하여 영어학습에 관여하는 뇌 영역별 정량뇌파 결과를 분석함으로써 영어학습을 뇌 영역별 활성화로 변별할 수 있는 기준을 마련한 것이다. 영어학습의 좌우뇌 균형발달을 위한 지침을 제시하였으며 특정 학습영역과 연계한 뇌의 활성화를 제시함으로써 개인별 뇌 기능에 따른 영어학습 향상을 위한 뇌기능을 훈련할 수 있는 이론적 토대를 마련하였다 (권형규, 2008). 이를 통하여 단순한 이미지와 오감을 활용한 우뇌적 학습방향이 아니라 개인별 정량뇌파 데이터에 의한 통합뇌 훈련모형을 개발하였다. 정량뇌파 분석을 위해서는 피험자 개인별 영어능력 검사점수에 대한 뇌파지표를 도출하여 단계적 변수선택법에 의한 다중회귀분석을 실시하였다.

  • PDF

Prediction of East Asian Brain Age using Machine Learning Algorithms Trained With Community-based Healthy Brain MRI

  • Chanda Simfukwe;Young Chul Youn
    • 대한치매학회지
    • /
    • 제21권4호
    • /
    • pp.138-146
    • /
    • 2022
  • Background and Purpose: Magnetic resonance imaging (MRI) helps with brain development analysis and disease diagnosis. Brain volumes measured from different ages using MRI provides useful information in clinical evaluation and research. Therefore, we trained machine learning models that predict the brain age gap of healthy subjects in the East Asian population using T1 brain MRI volume images. Methods: In total, 154 T1-weighted MRIs of healthy subjects (55-83 years of age) were collected from an East Asian community. The information of age, gender, and education level was collected for each participant. The MRIs of the participants were preprocessed using FreeSurfer(https://surfer.nmr.mgh.harvard.edu/) to collect the brain volume data. We trained the models using different supervised machine learning regression algorithms from the scikit-learn (https://scikit-learn.org/) library. Results: The trained models comprised 19 features that had been reduced from 55 brain volume labels. The algorithm BayesianRidge (BR) achieved a mean absolute error (MAE) and r squared (R2) of 3 and 0.3 years, respectively, in predicting the age of the new subjects compared to other regression methods. The results of feature importance analysis showed that the right pallidum, white matter hypointensities on T1-MRI scans, and left hippocampus comprise some of the essential features in predicting brain age. Conclusions: The MAE and R2 accuracies of the BR model predicting brain age gap in the East Asian population showed that the model could reduce the dimensionality of neuroimaging data to provide a meaningful biomarker for individual brain aging.

Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture

  • Hyunsoo Jang;Seo Hyun Kim;Youmin Koh;Ki-Jun Yoon
    • International Journal of Stem Cells
    • /
    • 제15권1호
    • /
    • pp.41-59
    • /
    • 2022
  • The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.

Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism

  • Kim, Hoon;Lee, Jung Eun;Yoo, Hyun Ju;Sung, Jae Hoon;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.689-697
    • /
    • 2020
  • Objective : Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism. Methods : The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry. Results : On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone. Conclusion : Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.

Primary Culture of Endothelial Cells from Murine Brain Microvessels

  • 이선령
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.127-130
    • /
    • 2006
  • It is important to coordinated interaction among neurons, astrocytes and endothelial cells to maintain the function of brain. To study their regulatory mechanisms in vitro system, the co-culture system among the isolated cells from brain may be needed. However, the method for purifying brain microvascular endothelial cells (BMEC) far culture have not established yet. In this study, the proper culture methods of mice cells using two different strains, CD1 and C57BL6, to obtain the pure and plentiful endothelial cells were described. The flatted-round forms of CD1 endothelial cells grew on the collagen-IV coating plates, while the purified cells from C57 mice preferred type collagen-I dishes for their growth. Both cells displayed anti-PECAM-1 (CD31) and von Willebrand Factor immune-reactivity. These results indicated that different coating materials not only improve attachment of isolated cells but also promoting growth of cells, suggesting that this method of purifying murine Brain microvascular endothelial cells (BMEC) provides a suitable model to investigate blood-brain-barrier (BBB) properties within neurovascular unit in vitro.

  • PDF

The Efflux Transport of Choline through Blood-Brain Barrier is Inhibited by Alzheimer's Disease Therapeutics

  • Lee, Na-Young;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.179-183
    • /
    • 2008
  • In the present study, we examined the effects of several therapeutics of Alzheimer's disease, such as donepezil hydrochloride, tacrine and $\alpha$-phenyl-n-tert-butyl nitrone (PBN) on choline efflux from brain to circulating blood. The brain-to-blood efflux of [$^3H$]choline in rats was significantly inhibited by tacrine and PBN. Also the [$^3H$]choline efflux was reduced by tacrine and donepezil hydrochloride in the TR-BBB cells, in vitro the blood-brain barrier (BBB) model. These results suggest that these drugs may influence choline efflux transport from brain to blood and regulate the choline level in brain resulting in the increase of acetylcholine synthesis.

Neuroprotective effects of consuming bovine colostrum after focal brain ischemia/reperfusion injury in rat model

  • Choi, Han-Sung;Ko, Young-Gwan;Lee, Jong-Seok;Kwon, Oh-Young;Kim, Sun-Kyu;Cheong, Chul;Jang, Ki-Hyo;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • 제4권3호
    • /
    • pp.196-202
    • /
    • 2010
  • To investigate the neuroprotective effects of bovine colostrums (BC), we evaluate the ability of consuming BC after focal brain ischemia/reperfusion injury rat model to reduce serum cytokine levels and infarct volume, and improve neurological outcome. Sprague-Dawley rats were randomly divided into 4 groups; one sham operation and three experimental groups. In the experimental groups, MCA occlusion (2 h) and subsequent reperfusion (O/R) were induced with regional cerebral blood flow monitoring. One hour after MCAO/R and once daily during the experiment, the experimental group received BC while the other groups received 0.9% saline or low fat milk (LFM) orally. Seven days later, serum pro-inflammatory cytokine (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) and anti-inflammatory cytokine (IL-10) levels were assessed. Also, the infarct volume was assessed by using a computerized image analysis system. Behavioral function was also assessed using a modified neurologic severity score and corner turn test during the experiment. Rats receiving BC after focal brain I/R showed a significant reduction (-26%/-22%) in infarct volume compared to LFM/saline rats, respectively (P < 0.05). Serum IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ levels were decreased significantly in rats receiving BC compared to LFM/saline rats (P < 0.05). In behavioral tests, daily BC intake showed consistent and significant improvement of neurological deficits for 7 days after MCAO/R. BC ingestion after focal brain ischemia/reperfusion injury may prevent brain injury by reducing serum pro-inflammatory cytokine levels and brain infarct volume in a rat model.

Effects of Size and Permittivity of Rat Brain on SAR Values at 900 MHz and 1,800 MHz

  • Hyun Jong-Chul;Oh Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2006
  • The objective of this study is to evaluate the effects of size and permittivity on the specific absorption rate(SAR) values of rat brains during microwave exposure at mobile phone frequency bands. A finite difference time domain (FDTD) technique with perfect matching layer(PML) absorbing boundaries is used for this evaluation process. A color coded digital image of the Sprague Dawley(SD) rat based on magnetic resonance imaging(MRI) is used in FDTD calculation with appropriate permittivity values corresponding to different tissues for 3, 4, 7, and 10 week old rats. This study is comprised of three major parts. First, the rat model structure is scaled uniformly, i.e., the rat size is increased without change in permittivity. The simulated SAR values are compared with other experimental and numerical results. Second, the effect of permittivity on SAR values is examined by simulating the microwave exposure on rat brains with various permittivity values for a fixed rat size. Finally, the SAR distributions in depth, and the brain-averaged SAR and brain 1 voxel peak SAR values are computed during the microwave exposure on a rat model structure when both size and permittivity have varied corresponding to different ages ranging from 3 to 10 weeks. At 900 MHz, the simulation results show that the brain-averaged SAR values decreased by about 54 % for size variation from the 3 week to the 10 week-old rat model, while the SAR values decreased only by about 16 % for permittivity variation. It is found that the brain averaged SAR values decreased by about 63 % when the variations in size and permittivity are taken together. At 1,800 MHz, the brain-averaged SAR value is decreased by 200 % for size variation, 9.7 % for permittivity variation, and 207 % for both size and permittivity variations.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.37-44
    • /
    • 2021
  • 뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.

전기전도도의 비균질성을 고려한 정밀 두뇌 모형 내부에서 유기되는 유도 전기장 분포해석 (Numerical Analysis of Electric Field Distribution Induced Inside a Realistic Brain Model Considering Conductivity Heterogeneity)

  • 김동훈;이일호;원철호
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.314-319
    • /
    • 2008
  • In this paper, the electric field distribution induced inside the brain during Transcranial Magnetic Stimulation(TMS) has been thoroughly investigated in terms of tissue heterogeneity and anisotropy as well as different head models. To achieve this, first, an elaborate head model consisting of seven major parts of the head has been built based on the Magnetic Resonance(MR) image data. Then the Finite Element Method(FEM) has been used to evaluate the electric field distribution under different head models or three different conductivity conditions when the head model has been exposed to a time varying magnetic field achieved by utilizing the Figure-Of-Eight(FOE) stimulation coil. The results show that the magnitude as well as the distribution of the induced field is significantly affected by the degree of geometrical asymmetry of head models and conductivity conditions with respect to the center of the FOE coil.