DOI QR코드

DOI QR Code

Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism

  • Kim, Hoon (Department of Neurosurgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Jung Eun (Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Hyun Ju (Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sung, Jae Hoon (Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Yang, Seung Ho (Department of Neurosurgery, Cell Death Disease Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2020.02.27
  • Accepted : 2020.05.26
  • Published : 2020.11.01

Abstract

Objective : Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism. Methods : The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry. Results : On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone. Conclusion : Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.

Keywords

References

  1. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA : NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30 : 2967-2978, 2010 https://doi.org/10.1523/JNEUROSCI.5552-09.2010
  2. Alessandri B, Schwandt E, Kamada Y, Nagata M, Heimann A, Kempski O : The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats. J Neurotrauma 29 : 2181-2191, 2012 https://doi.org/10.1089/neu.2011.2067
  3. Aronowski J, Zhao X : Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42 : 1781-1786, 2011 https://doi.org/10.1161/STROKEAHA.110.596718
  4. Au A : Metabolomics and lipidomics of ischemic stroke. Adv Clin Chem 85 : 31-69, 2018 https://doi.org/10.1016/bs.acc.2018.02.002
  5. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C : SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 69 : 2245-2260, 2012 https://doi.org/10.1007/s00018-012-0925-5
  6. Berthet C, Castillo X, Magistretti PJ, Hirt L : New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis 34 : 329-335, 2012 https://doi.org/10.1159/000343657
  7. Castro MA, Beltran FA, Brauchi S, Concha II : A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110 : 423-440, 2009 https://doi.org/10.1111/j.1471-4159.2009.06151.x
  8. Chinopoulos C : Which way does the citric acid cycle turn during hypoxia? The critical role of ${\alpha}$-ketoglutarate dehydrogenase complex. J Neurosci Res 91 : 1030-1043, 2013 https://doi.org/10.1002/jnr.23196
  9. Esen F, Erdem T, Aktan D, Kalayci R, Cakar N, Kaya M, et al. : Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. J Neurosurg Anesthesiol 15 : 119-125, 2003 https://doi.org/10.1097/00008506-200304000-00009
  10. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV : Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12 : 941-966, 2013 https://doi.org/10.1016/j.arr.2013.09.004
  11. Gallagher CN, Carpenter KL, Grice P, Howe DJ, Mason A, Timofeev I, et al. : The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132(Pt 10) : 2839-2849, 2009 https://doi.org/10.1093/brain/awp202
  12. Helmy MM, Helmy MW, El-Mas MM : Additive renoprotection by pioglitazone and fenofibrate against inflammatory, oxidative and apoptotic manifestations of cisplatin nephrotoxicity: modulation by PPARs. PLoS One 10 : e0142303, 2015 https://doi.org/10.1371/journal.pone.0142303
  13. Huang Q, Sun M, Li M, Zhang D, Han F, Wu JC, et al. : Combination of NAD+ and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress. Mol Neurobiol 55 : 6063-6075, 2018 https://doi.org/10.1007/s12035-017-0809-7
  14. Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J : Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 105 : 481-491, 2009 https://doi.org/10.1161/CIRCRESAHA.109.203703
  15. Irrera N, Pizzino G, Calo M, Pallio G, Mannino F, Fama F, et al. : Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front Pharmacol 8 : 459, 2017 https://doi.org/10.3389/fphar.2017.00459
  16. Izawa Y, Takahashi S, Suzuki N : Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia. Brain Res 1305 : 64-73, 2009 https://doi.org/10.1016/j.brainres.2009.09.098
  17. Katsuki H : Exploring neuroprotective drug therapies for intracerebral hemorrhage. J Pharmacol Sci 114 : 366-378, 2010 https://doi.org/10.1254/jphs.10R05CR
  18. Keep RF, Hua Y, Xi G : Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11 : 720-731, 2012 https://doi.org/10.1016/S1474-4422(12)70104-7
  19. Kim SJ, Kim SH, Kim JH, Hwang S, Yoo HJ : Understanding metabolomics in biomedical research. Endocrinol Metab (Seoul) 31 : 7-16, 2016 https://doi.org/10.3803/EnM.2016.31.1.7
  20. Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, et al. : ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 6 : e1879, 2015 https://doi.org/10.1038/cddis.2015.248
  21. Li Y, Yang J, Chen MH, Wang Q, Qin MJ, Zhang T, et al. : Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol Res 99 : 101-115, 2015 https://doi.org/10.1016/j.phrs.2015.05.012
  22. Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR : Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab 26 : 230-252, 2006 https://doi.org/10.1038/sj.jcbfm.9600183
  23. Mayer SA, Rincon F : Treatment of intracerebral haemorrhage. Lancet Neurol 4 : 662-672, 2005 https://doi.org/10.1016/S1474-4422(05)70195-2
  24. Ribo M, Grotta JC : Latest advances in intracerebral hemorrhage. Curr Neurol Neurosci Rep 6 : 17-22, 2006 https://doi.org/10.1007/s11910-996-0004-0
  25. Rice AC, Zsoldos R, Chen T, Wilson MS, Alessandri B, Hamm RJ, et al. : Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928 : 156-159, 2002 https://doi.org/10.1016/S0006-8993(01)03299-1
  26. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK : The peroxisome proliferator-activated receptor-${\gamma}$ is a negative regulator of macrophage activation. Nature 391 : 79-82, 1998 https://doi.org/10.1038/34178
  27. Rolland WB 2nd, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, et al. : FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir Suppl 111 : 213-217, 2011 https://doi.org/10.1007/978-3-7091-0693-8_36
  28. Rynkowski MA, Kim GH, Komotar RJ, Otten ML, Ducruet AF, Zacharia BE, et al. : A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3 : 122-128, 2008 https://doi.org/10.1038/nprot.2007.513
  29. Sahuquillo J, Merino MA, Sanchez-Guerrero A, Arikan F, Vidal-Jorge M, Martinez-Valverde T, et al. : Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: a microdialysis study in patients with traumatic brain injuries. PLoS One 9 : e102540, 2014 https://doi.org/10.1371/journal.pone.0102540
  30. Sanchez-Abarca LI, Tabernero A, Medina JM : Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36 : 321-329, 2001 https://doi.org/10.1002/glia.1119
  31. Schroder K, Zhou R, Tschopp J : The NLRP3 inflammasome: a sensor for metabolic danger? Science 327 : 296-300, 2010 https://doi.org/10.1126/science.1184003
  32. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, et al. : NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell 68 : 185-197.e6, 2017 https://doi.org/10.1016/j.molcel.2017.08.017
  33. Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ : An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 41 : 438-450, 2009 https://doi.org/10.1080/07853890902887303
  34. Stutz A, Kolbe CC, Stahl R, Horvath GL, Franklin BS, van Ray O, et al. : NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 214 : 1725-1736, 2017 https://doi.org/10.1084/jem.20160933
  35. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, et al. : Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134(Pt 2) : 484-494, 2011 https://doi.org/10.1093/brain/awq353
  36. Vander Heiden MG, Cantley LC, Thompson CB : Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 : 1029-1033, 2009 https://doi.org/10.1126/science.1160809
  37. Wang J : Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92 : 463-477, 2010 https://doi.org/10.1016/j.pneurobio.2010.08.001
  38. Wang J, Dore S : Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27 : 894-908, 2007 https://doi.org/10.1038/sj.jcbfm.9600403
  39. Wang J, Song MY, Lee JY, Kwon KS, Park BH : The NLRP3 inflammasome is dispensable for ER stress-induced pancreatic ${\beta}$-cell damage in Akita mice. Biochem Biophys Res Commun 466 : 300-305, 2015 https://doi.org/10.1016/j.bbrc.2015.09.009
  40. Wang Y, Yu B, Wang L, Yang M, Xia Z, Wei W, et al. : Pioglitazone ameliorates glomerular NLRP3 inflammasome activation in apolipoprotein E knockout mice with diabetes mellitus. PLoS One 12 : e0181248, 2017 https://doi.org/10.1371/journal.pone.0181248
  41. Yao ST, Cao F, Chen JL, Chen W, Fan RM, Li G, et al. : NLRP3 is required for complement-mediated caspase-1 and IL-1beta activation in ICH. J Mol Neurosci 61 : 385-395, 2017 https://doi.org/10.1007/s12031-016-0874-9
  42. Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, et al. : Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci 12 : 2728-2734, 2007 https://doi.org/10.2741/2267
  43. Zhao Y, Li Q, Zhao W, Li J, Sun Y, Liu K, et al. : Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. J Ethnopharmacol 169 : 210-218, 2015 https://doi.org/10.1016/j.jep.2015.04.030
  44. Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, et al. : Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke 43 : 524-531, 2012 https://doi.org/10.1161/STROKEAHA.111.635672