• Title/Summary/Keyword: Bragg reflector

Search Result 103, Processing Time 0.027 seconds

The Effect of Front Facet Reflections on the Reflectivity Spectrum of Bragg Reflector structures (단면 반사율이 Bragg Reflector 구조의 전체 반사율 스펙트럼에 미치는 효과)

  • 김부근
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.203-208
    • /
    • 1991
  • We present an analytic equation for the reflectivity spectrum of a Bragg reflector in terms of the front mirror reflectivity, due to the refractive index difference between the refractive index of outside medium and the average refractive index of Bragg reflector structures, and the reflectivity of a Bragg reflector calculated by the coupled wave method. We show that even Fresnel reflection causes the reflectivity spectrum of a bragg reflector to be very different from that of Bragg reflectors calculated by the coupled wave method. The reflectivity spectrum of a Bragg reflector is dramatically changed because the interference effect between the reflected wave from the front facet and that from the Bragg reflector is changed due to the difference of a phase change from a Bragg reflector when the sequence of layers in a Bragg reflector is changed.

  • PDF

A Study of Solid Electron Beam and Slow Wave Hybrid Mode Introduction (원형 전자빔과 지파 하이브리드 모드의 상호연구)

  • Kim, Won-Sop;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.392-393
    • /
    • 2009
  • The study is aimed at studying a weakly relativistic oversized BWO with a Bragg reflector entrance of SWS. The Bragg reflector reflects microwaves, while it is open for beam propagations. By changing the boundary condition at the beam entrance, the effect of the Bragg reflector on the BWO performance is examined.

  • PDF

Numerical Analysis of Bragg Reflector Type Film Bulk Acoustic Wave Resonator (수치적 계산을 이용한 Bragg Reflector형 탄성파 공진기의 특성 분석)

  • 김주형;이시형;안진호;주병권;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.980-986
    • /
    • 2001
  • Bragg reflector type FBAR was fabricated on the Si(100) substrate. We measured a frequency response of the resonator at 5.2 GHz and analyzed it by numerical calculation considering actual acoustic losses of each layer in the structure. We fabricated nine layer Bragg reflector of W-SiO$_2$pairs using r.f. sputtering method and fabricated AlN piezoelectric and Al electrodes using pulsed dc sputtering. The return loss(S$_{11}$) of the fabricated Bragg reflector type FBAR was 12 dB at 5.38 GHz and the series resonance frequency(f$_{s}$) was 5.376 GHz and the parallel resonance frequency(f$_{p}$) was 5.3865 GHz. Effective electro-mechanical coupling constant (K$_{eff{^2}}$) and Quality factors(Q$_{s}$), the Figures of Merit of the resonator, were about 0.48% and 411, respectively. We extracted acoustic parameters of AlN piezoelectric and reflection coefficient of the Bragg reflector by numerical calculation. We could know that material acoustic impedance and wave velocity of AlN piezoelectric decreased for intrinsic value and the electromechanical coupling constant(K$_2$) value was very low owing to the poor quality of the AlN piezoelectric. Reflection coefficient of Bragg reflector was 0.99966 and reflection band was very wide from 2.5 to 9.5 GHz.

  • PDF

A Study on the Deposition Condition of Acoustic Bragg Reflector Using RF/DC Magnetron Sputtering (RF/DC Magnetron Sputtering을 이용한 Acoustic Bragg Reflector 최적 증착조건에 관한 연구)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.143-147
    • /
    • 2002
  • In this paper, we investigated the deposition condition of Bragg reflector formation that will be expected to play an important role in future FBAR device applications. The thin films were deposited using an RF/DC magnetron sputtering technique. The material characteristics such as deposition rates, grain structures and surface roughnesses of the deposited silicon dioxide (SiO$_2$) and tungsten (W) films were investigated for various deposition conditions. As a result, it was found that the deposition condition could significantly affect the material characteristics of the deposited films and also the optimization of the deposition process is essentially important to obtain the desirable Brags reflector structure consisted of high-quality in films.

  • PDF

A New Planar Spiral Inductor with Multi-layered Bragg Reflector for Si-Based RFIC's

  • Mai Linh;Lee Jae-Young;Le Minh-Tuan;Pham Van-Su;Yoon Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.88-91
    • /
    • 2006
  • In this paper, a novel physical structure for planar spiral inductors is proposed. The spiral inductors were designed and fabricated on multi-layered substrate Bragg-reflector/silicon (BR/Si) wafer. The impacts of multi-layered structure substrate and pattern on characteristics of inductor were studied. Experimental results show that the inductor embedded on Bragg reflector/silicon substrate can achieve the best improvement. At 0.4-1.6 GHz, the Bragg reflector seems to significantly increase the S11-parameter of the inductor.

A New Planar Spiral Inductor with Multi-layered Bragg Reflector for Si-Based RF IC's

  • Linh Mai;Lee Jae-Young;Tuan Le Minh;Su Pham Van;Yoon Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.255-258
    • /
    • 2006
  • In this paper, a novel physical structure for planar spiral inductors is proposed. The spiral inductors were designed and fabricated on multi-layered substrate Bragg-reflector/silicon (BR/Si) wafer. The impacts of multi-layered structure substrate and pattern on characteristics of inductor were studied. Experimental results show that the inductor embedded on Bragg reflector/silicon substrate can achieve the best improvement. At 0.4-1.6 GHz, the Bragg reflector seems to significantly increase the $S_{11}-parameter$ of the inductor.

  • PDF

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

2.5 GHz ZnO-based FBAR Devices and Their Thermal Improvements

  • Mai, Linh;Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.59-62
    • /
    • 2008
  • In this paper, we study ZnO-based a film bulk acoustic resonator (FBAR) using a multi-layered Bragg reflector. We insert chromium adhesion layers of 0.03 mm-thick to the Bragg reflector and improve the performance using thermal treatments. At operating frequency about 2.5 GHz, excellent resonance characteristics are observed in terms of good return loss and high quality factor.

  • PDF

Biosensor Based on Distributed Bragg Reflector Photonic Crystals for the Detection of Protein A

  • Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • The functionalized photonic crystals of porous silicon biosensor was prepared for the application as a label-free biosensor based on distributed Bragg reflector interferometer. Prepared distributed Bragg reflector of porous silicon biosensor displayed sharp reflection in the optical reflective spectra. The mean of construction of molecular architectures on distributed Bragg reflector of porous silicon surfaces was investigated for the step-by-step binding interaction with amines, biotin, avidin, and biotinylated protein A. The subsequent introduction of avidin, and biotinylated protein A resulted in the reflectivity shifted to longer wavelengths, indicative of a change in refractive indices induced by binding of biomolecules.

Improvement of Resonant Characteristics due to the Thermal Annealing Effect in Multi-layer Thin-film SMR Devices (Thermal Annealing 효과에 의한 다층 박막 FBAR 소자의 공진 특성 개선)

  • ;;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.633-636
    • /
    • 2003
  • In this work, We, for the first time, present the effects of the thermal annealing of the W/SiO$_2$ multi-layer quarter wavelength reflectors on the resonant properties of the ZnO-based SMR devices. In order to improve the resonant properties of the SMR devices, we annealed thermally the reflectors formed on a silicon substrate using a RF magnetron sputtering technique. As a result, the resonant properties of the SMR devices were observed to strongly depend on the annealing conditions applied to the reflectors. The SMR devices with the reflectors annealed at 40$0^{\circ}C$/30min showed excellent resonance properties as compared to those with the reflectors non-annealed (as-deposited). The newly proposed simple thermal annealing process will be very useful to more effectively improve the resonant properties of the future SMR devices with W/SiO$_2$ multi-layer quarter wavelength reflectors.

  • PDF