• Title/Summary/Keyword: Boussinesq's Equation

Search Result 24, Processing Time 0.021 seconds

PSEUDOSPECTRAL METHOD FOR THE DAMPED BOUSSINESQ EQUATION

  • Choo, S.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.889-901
    • /
    • 1998
  • Numerical approximations by pseudospectral method are obtained for the damped Boussinesq equation which is a modification of the good Boussinesq equation. The consistency and stability of the method are obtained using the extended Lax-Richtmyer equivalence theorem, which imply the convergence of the method. We obtain error estimates of O(h$^{s}$ + k$^2$) for a fully discrete pseudospectral method.

  • PDF

THE MULTISOLITON SOLUTION OF GENERALIZED BURGER'S EQUATION BY THE FORMAL LINEARIZATION METHOD

  • Mirzazadeh, Mohammad;Taghizadeh, Nasir
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.207-214
    • /
    • 2011
  • The formal linearization method is an efficient method for constructing multisoliton solution of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, we obtain multisoliton solution of generalization Burger's equation and the (3+1)-dimension Burger's equation and the Boussinesq equation by the formal linearization method.

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

Shoaling and Breaking Characteristics of Fully Nonlinear Boussinesq Model (완전비선형 Boussinesq 모형의 천수 및 쇄파 특성)

  • YOON JONG-TAE;PARK SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.29-33
    • /
    • 2005
  • The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport, and design of coastal structures. Numerical experiments are conducted to identify the shoaling and breaking characteristics of a fully nonlinear Boussinesq equation-based model. Simulated shoaling showed good agreement with the Shouto's formula, and the results of the breaking experiment agreed well with experimented data, over several beach profile.

Analysis of Hertzian Contact using East Fourier Transform (FFT를 이용한 Hertzian Contact 해석)

  • 구영필;조용주
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.121-127
    • /
    • 1998
  • In this study, a numerical procedure to solve a contact problem has been developed. The procedure takes advantage of signal processing technique in frequency domain to achieve shorter computing time. Boussinesq's equation was adopted as the response function. This procedure is applicable to a non-periodic surface profile as well as a periodic one. The validity of this procedure has been established by comparing the numerical results with the exact solutions. The fastness of this procedure was shown in comparison with other algorithm.

Derivation and Application of Boussinesq Equations for the Wave Field in Porous Media (공극매체에서의 파동장에 대한 Boussinesq 방정식의 유도 및 적용)

  • Chun, Insik;Min, Yongchim;Lim, Hak-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1061-1071
    • /
    • 2015
  • In the present study, the Navier-Stokes (N-S) equations delineating water flows inside porous media were derived applying Reynolds transport theorem in order to provide a basis for analyzing water wave problems inside the porous media. Then, the derived N-S equations were compared with the same species of equations in existing researches. Based on the N-S equations, a set of Boussinesq equations was then derived in such a form that the dispersiveness and nonlinearity of water waves inside the porous media can be properly reproduced. Finally, numerical analyses were carried out to demonstrate the validity of the equations. The reflection and transmission coefficients of porous breakwaters were calculated and compared with the results of existing hydraulic experiments. The numerical results showed a rather sensitive dependency on the virtual mass coefficient of grains constituting the porous media. The selection of the coefficient with zero turned out to give nice agreements with numerical and experimental results.

Development of Weakly Nonlinear Wave Model and Its Numerical Simulation (약비선형 파랑 모형의 수립 및 수치모의)

  • 이정렬;박찬성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-189
    • /
    • 2000
  • A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

  • PDF

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

A New FFT Technique for the Analysis of Contact Pressure and Subsurface Stress in a Semi-Infinite Solid

  • Cho, Yong-Joo;Koo, Young-Pil;Kim, Tae-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.331-337
    • /
    • 2000
  • A numerical procedure for contact analysis and calculating subsurface stress was developed. The procedure takes the advantage of signal processing technique in frequency domain to achieve shorter computing time. Boussinesq's equation was adopted as a response function in contact analysis. The validity of this procedure was proved by comparing the numerical results with the exact solutions. The fastness of this procedure was also compared with other algorithm.

  • PDF

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.