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A New FFT Technique for the Analysis of Contact Pressure and
Subsurface Stress in a Semi-Infinite Solid
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A numerical procedure for contact analysis and calculating subsurface stress was developed.

The procedure takes the advantage of signal processing technique in frequency domain to
achieve shorter computing time. Boussinesq’s equation was adopted as a response function in
contact analysis. The validity of this procedure was proved by comparing the numerical results
with the exact solutions. The fastness of this procedure was also compared with other algorithm.
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1. Introduction

To analyze tribological phenomena, the contact
pressure distribution and subsurface stress field
should be evaluated. Nonconforming contacts
such as rolling bearing elements or gear teeth are
subjected to high contact stresses and the subsur-
face stresses which cause pitting or spalling. Even
in a conformal contact condition, the delamina-
tion wear occurred by the cyclic stresses due to
the contacts of asperities (Suh, 1977).

Numerous tribological contact problems were
studied with Hertzian contact model since his
contact analysis(Hertz, 1882) and Greenwood
and Williamson (1966) analyzed rough surface
contacts with the assumption of spherical shape of
asperity tips and Gaussian distribution of asperity
heights. A more complicated random process
model with spherical asperities was adopted by
Bush et. al(1975). The results of their contact
models show good estimate on average properties
of rough contact in a low contact pressure.
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However, under the contact of high load, the
contacts of adjacent asperities affect each other
and those approaches inevitably yield some error.

With the advent of computer, various numeri-
cal techniques have been recently developed.
Finite element and boundary element methods
popular in structural analysis are also used in
contact analysis (Anderson, 1982; Webster, 1986;
Kwak, 1990). They are powerful in the contact
analysis of complex shaped bodies and layered
solids. But there are some difficulties in applica-
tion to 3-dimensional cases. For example, the size
of stiffness matrix is very large in 3-dimensional
analysis.

The contact area in a tribological problem is
relatively small enough to be approximated as the
contact on a half space. Most of numerical
schemes for the contact analysis in tribology are
thus based on Boussinesq’s solution. Kalker and
Randen (1972) used a numerical technique based
on minimum principle of the total internal
energy. Tian and Bhushan(1996) calculated the
contact of 3-dimensional surfaces with the var-
iational principle. Ren and Lee(1993) adopted
the moving grid method to 3-dimensional contact
analysis which reduced matrix size in linear equa-
tions, saved the computer memory space effective-
ly, and enabled the reduction of calculation time.
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But these methods are also inadequate to the
analysis of contact of real rough surfaces. To
represent the roughness of real surface, a very fine
mesh is needed and the number of nodes is in-
creased very much. So most analyses are confined
to 2-dimensional (Webster, 1986; Bailey and
Sayles, 1991; Komvopoulous, 1992) except a few
cases(Tian and Bhushan, 1996; Lai and Cheng
1985).

To overcome this problem, the signal process-
ing technique in frequency domain can be used in
the contact analysis. This procedure takes the
advantages of Fast Fourier Transformation
(FFT). The effectiveness of this procedure is to
reduce the computing time substantially in com-
parison to conventional methods. For example, in
the case of the surface with N X N node numbers,
O (Nlog,N) multiplications are required in the
signal process in frequency domain, but in con-
ventional algorithms, the influence matrix of N?
% N? should be constructed and a set of N? linear
algebraic equations should be solved. Ju and
Farris (1996) introduced a FFT method for 2
-dimensional line load contact problem. Stanley
and Kato(1997) presented the method that took
advantages of both FFT and the variational for-
mulation for 2-dimensional and 3-dimensional
elastic contact problems of arbitrary topography.
Their methods are based on Westergaard’s solu-
tion of sinusoidal displacement(Westergaard,
1936).

In this study, a new FFT algorithm for the
contact analysis is introduced, in which Bouiss-
sinesq’s equation is used as a response function
and subsurface stress is also obtained by FFT
algorithm.

2. Analysis Procedure

2.1 Boussinesq’s equation

The elastic displacements due to a concentrated
point load P at the origin on the surface of a half
space are:
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where p= (x?+ y*+ 2% V2. The surface plane was
taken to be the plane z=0, and the positive sense
of the axis of z is downwards.

The distributed pressure p(&, 7) acting on the
area S produces the displacements in the direction
of the load:
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where p={(x—£)*+ (y—7)*+2%}""
On the surface of the solid, the displacement is:
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where 4 (&, 7) and displacement

1
YO+ (p)?
u. due to the distributed pressure p is the convo-
lution of p and 4.

2.2 Contact analysis with FFT

With the two functions £, and f,, and their
corresponding Fourier transforms F, (@) and F;
(w), the Fourier transform of the convolution of
the two functions is F;(w) F»(w). The displace-
ment due to the distributed pressure p on the
surface, can be expressed in frequency domain as

U(a)xa (l)y):P((Uxa (Uy)H(CUx’ CU.V) (5)

where P(ws w,) is the Fourier transform of
pressure p and H (wx, wy) is the Fourier trans-
form of j which can be treated as a response
function in signal process. Fourier transform of
pressure p can be expressed as

P((Ux, (Uy) = U(a)xa CUy) /H(Q)x, wy) (6)

If the surface deformation is known, the contact
pressure can be obtained by the inverse Fourier
transform of Eq. (5). In conventional techniques,
the procedure of getting the contact pressure from
the surface deformation is a matrix inversion
process or a process of solving a set of linear
algebraic equations which are time consuming,
but in Eq. (5), that procedure is converted to a
simple algebraic procedure of division.
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2.3 Subsurface stresses in the solid
Subsurface stresses at a point (x, y, 2) are
expressed as (LOVE, 1929)
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in which y is the Boussinesq’s 3-d logarithmic
potential function, ¥/ is the Newtonian potential,
A and g are Lamé’s elastic constants for the
material of the solid,

A= Ev s E
I+v) (I=2y)° 2(1+v)

When uniform pressure p is applied to the
region of the surface consisting of 24 X 25 square,
the derivatives of y and V/ in stress equation are
given in Appendix. By numerical integration of
the stresses due to the pressure on the discretized
small square over contact area, the subsurface
stresses at point (x, y, z) are obtained conven-
tionally. It is a time consuming procedure to

calculate the stress distribution in a 3-dimen-
sional body with the numerical double integra-
tion of contact pressure by this conventional
method. Fortunately, the derivatives of y and V
in stress equation are the functions of (x — &) and
(y—17), thus the stresses due to distributed con-
tact pressure p(&, ») on the surface S are expres-
sed as convolution integrals. So, the FFT algor-
ithm proposed in Sec. 2.2 is also applicable to
calculating the stress distribution in a body
caused by contact pressure.

3. Numerical Procedure

Figure | is the schematic representation of
contact deformation. To solve a contact problem,
an iterative procedure is required because of fol-
lowing constraints.

-------- Origial shapo
—— Deformed shape
\ BODY 1 g
\\ S _',_--"" "'--..___ e “/" h,
8 o hy| 8
/ BODY 2 N

Fig. 1 Schematic representation of the deformation
of contact

Inside the contact region:

p(x, ¥) 20, g(x, y) =0 (8a)
Outside the contact region:
p(x, ) =0, g(x, y) 20 (8b)

where g is the gap between two bodies and p is
the contact pressure. g is expressed as

g, y)=wlx, y) +us(x, y)
+hi(x v) +he(x, y) —6 9

where § is the relative approach of the two sur-
faces, %,(x) and /,(x) are the height distribu-
tions of each surface profile before deformation,
and ¢, (x, y) and w,(x, y) are the deformations
of each surface. Figure 2 shows the flow diagram
for calculating contact pressure and subsurface
stress.

4. Numerical Results and Discussion

A new numerical algorithm for contact and
subsurface stress distribution was developed.

At first, the contact stress and deformation of
the two bodies were solved by FFT method.

The numerical results coincides very well with
The major advantage of this method is of reduc-
ing CPU time in comparison to any other algor-
ithm. The long CPU time has been a big problem
Hertzian contact of rigid
sphere and elastic flat plane was taken as an
example to show the efficiency of this FFT tech-
nique. The example is like this. The radius of the
sphere is 100mm, modules of elasticity of plane is
200Gpa and its Poisson’s ratio is 0.3. the relative

in contact analysis.



INPUT

Surface profile of the surface
Contact force

Material properties

| FFT of the response function I

v
l Assume the approch of two surface |(————
y

Assume the displacement of surface whose

maximum is the approch of two surfaces

FFT of the displacement

| Evaluate contact pressure in Frequency domain by equation l

!

| Evaluatecontactpressmeinspacedomainbylnvuseml

r Evaluate subsurface stress by FFT technique I

Fig. 2 Flow chart

approach of the two surfaces was set 0.01lmm. The
number of nodes is 64 X 64 and grid size is 0.1 X
0.1lmm?. The numerical result was compared with
exact solution (Johnson, 1985). Figures 3 and 4
show the contact pressure distribution and dis-
placements in the contact region along x-axis.
The numerical result coincides very well with
exact solution. Figures 5 and 6 show the three
dimensional view of the contact pressures and the
deformation of the surface.

In Table 1, the CPU time and accuracy were
compared with that of successive over relaxation
(SOR) technique which is a most popular numer-
ical procedure in contact analysis. In this case, the
number of nodes is 64 x 64. The CPU time is only
about 1/72 of that of SOR technique. As
mentioned above, the difference of efficiency
depends on the number of nodes. Tian and Bhu-
shan (1996) obtained the solution of Hertzian
contact described by 256 x 256 in 4 days. With the
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Table 1 CPU time and accuracy

. SOR FFT .
Algorithm method | method Ratio
CPU time 3600 sec 50 sec 1/72

Error of Maxi- 0.08% 0.07%
mum Pressure

—o— Numerical Result
1.0 4 ----a--- Exact Solutlon

0.8 1

a°08 -

0.4 4

0.2 H

0.0 > . T
Xla

Fig. 3 Contact pressure along x-axis at the surface

—o— Numerical Resuit

uls
.-

PIP,

Fig. 5 3-D view of contact pressure in Hetzian
contact

present algorithm, it took less than 30 minutes.
To describe the roughness of a real surface,
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Fig. 6 3-D view of displacement in Hetzian contact

Fig. 7 The equivalent stress distribution on the
plane of y=0 in the solid

more nodes may be required. In the analysis of
contact of surface which is discretized by N X N
nodes, the influence matrix of N XN should be
constructed and the maximum size of the matrix is
radically enlarged to N?x N? in SOR algorithm.
As a result, the computing time is exponentially
increased with the number of nodes. Considerably
long computing time is required with the conven-
tional techniques in analyzing the contact of 3-
dimensional rough surfaces.

The same FFT technique is used for calculating
the subsurface stresses caused by the above exam-
ple of Hertzian contact. The stresses were calcu-
lated to the depth of 2a. where a is half length of
Hertzian contact. The number of nodes along z
~axis was 64. The computing time was consider-
ably reduced comparing to conventional numeri-
cal integration method. The stresses in Fig. 7 and
8 were normalized by maximum contact pressure
po- Figure 7 is the equivalent stress distribution
on the plane of y=0 in the solid. Maximum
equivalent stress is occurred at 0.468, and its
value is 0.6425p,. Their exact solution are 0.464,

Numerical Solution
oo EXaGt Sokstlon

.
© 04

T
0.0 05 1.0 15 20
Zla

(a) ox/p, along z axis

~—— Numaerical Solution
oo EXAGE Solution

T

T r
0.0 05 1.0 18 20
Z/a

(b) 0,/p, along z axis
Fig. 8 Comparison of the numberical results and
the exact solution of stress

and 0.6434p, respectively.

The numerical results for stress components
along z-axis are compared with the exact solution
(Johnson, 1985) in Fig. 8.

5. Conclusions

A new numerical technique using FFT was
developed for contact analysis and calculating the
sub-surface stress, and its efficiency was proved.
Boussinesq’s equation was adopted as a response
function and a filter in frequency domain in this
method. The following conclusions are derived
from this study.

(1) FFT method was very efficient both in
CPU time and in memory size.

(2) FFT method can be effectively used to the
calculation of subsurface stress distribution
caused by contact pressure.

(3) Numerical results were very well consistent
with the exact solution.
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Appendix

The derivatives of potential function y and V1 are:
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where @y, b, ¢s, d. are the distances of a point of (x, y, z) from corners of the pressed surface square

whose center is at (&, 7, 0) and x’, y" are x — &, y— 7 respectively



