Development of Weakly Nonlinear Wave Model and Its Numerical Simulation

약비선형 파랑 모형의 수립 및 수치모의

  • 이정렬 (성균관대학교 토목환경공학과) ;
  • 박찬성 ((주)도화종합기술공사 항만부)
  • Published : 2000.12.01

Abstract

A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

약비선형 완경사 방정식이 Galerkin 방법에 의하여 연속방정식으로부터 직접 유도되었으며 평균수면에서의 유속으로 표현된 운동방정식과 함께 사용된다. 두 방정식으로부터 수면변위 하나의 함수로 표현된 수식이 또한 유도되었으며 선형형은 Smith and Sprinks(1975)에 의하여 제안된 식과 일치하였고 천해, 천이영역, 심해 조건에 대하여 각각 Airy(1845), Boussinesq. Stokes의 2차 파랑과 비교되었다. 본 연구에서 유도된 비선형 파랑 방정식은 각 방향에 대하여 tridiagonal matrix를 얻기 위하여 근사적인 인수분해법으로 차분된다. 실험을 통하여 수립된 비선형 파랑 모형의 재현 능력을 검토하였으며 대체로 만족스러운 결과를 얻었다.

Keywords

References

  1. Encyclopedia Metropolitana Tidal and waves Airy, G.B.
  2. Proc. 13th Int. Conf. Coastal Engrg. Computation of combined refraction-diffraction Berkhoff, J.C.W.
  3. J. Math. Pure et Applique, 2nd Series v.17 Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontalen communiquant au liquide continue dans cd canal des vitesse sensibliement pareilles de la surface du fond Boussinesq, J.
  4. Sci. Inst. France, Series 2 v.23 no.1 Essai sur la theorie des eaux courantes, Memoires presentes par Divers Savants a L'Acad Boussinesq, J.
  5. J. Fluid Mech. v.291 The modified mild-slope equation Chamberlain, P.G.;Porter, D.
  6. Math. Comput. v.22 Numerical solution of the Navier-Stokes equations Chorin, A.J.
  7. Coastal Engrg. v.9 A practical alternative to the mild slope wave equation Copeland, G.J.M.
  8. Report 1. RCPWWAVE-A linear wave proapagtion model for engineering use Regional coastal processes numerical modeling system Ebersole, B.A.;Cialone, M.A.;Prater, M.D.
  9. Proc. 24th Int. Conf. Coastal Engrg. Time-dependent mild-slope equations for random waves Isobe, M.
  10. J. Korea. Soc. Coast. and Ocean Eng. v.6 no.3 Derivation of nonlinear model for irregular waves on mild slope Lee, J.L.
  11. Coastal Engrg. v.11 An efficient finite-difference approach to the mild-slope equation Madsen, P.A.;Larsen, J.
  12. Coastal Engrg. v.15 A new form of the Boussinesq equations with improved linear dispersion characteristics Madsen, P.A.;Murray, R.;Sorensen, O.R.
  13. Annals of the Highway Dept. The reflecting power of maritime works exposed to action of the waves Miche, R.
  14. Proc. 24th Int. Conf. on Coastal Engrg. A fully-dispersive weaklynonlinear wave model and its numerical solutions Nadaoka, K.;Beji, S.;Nakagawa, Y.
  15. J. Waterway, Port, Coastal and Ocean Engrg. v.119 An alternative form of the Boussinesq equations for nearshore wave propagation Nwogu, O.
  16. J. Fluid Mech. v.27 no.4 Long waves on a beach Peregrine, D.H.
  17. J. Fluid Mech. v.95 On the parabolic equation method for water-wave propagation Radder, A.C.
  18. J. Fluid Mech. v.72 Scattering of surface waves by a conical island Smith, R.;Sprinks, T.